DRC-2023-001047

Div of Waste Management and Radiation Control

FEB 0 1 2023

February 1, 2023

CD-2023-025

Mr. Doug Hansen, Director Division of Waste Management and Radiation Control P.O. Box 144880 Salt Lake City, UT 84114-4880

Re: Responses to Federal Cell Facility Application Request for Information - DRC-2022-023940

Dear Mr. Hansen,

Energy*Solutions* hereby responds to the Utah Division of Waste Management and Radiation Control's December 19, 2022 Request for Information (RFI) on our Federal Cell Facility Application.¹ A response is provided for each request using the Director's assigned reference number. A revised copy of Appendix D, *Geotechnical Seismic Engineering Evaluations of the FCF* and associated references reflecting responses to the Director's request are attached. This revised Appendix is not subject to the Permanent Claim of Business Confidentiality previously asserted.²

Appendix O: Erosion Modeling

O-2: After downloading SIBERIA from the public website, it did not compile, it may be because it has not been revised for modern architecture. The Division requests that EnergySolutions please provide: (1) Information pertaining to the operating system on which the SIBERIA code was run, (2) Information pertaining to the complier used to compile the SIBERIA source code, (3) SIBERIA compiled version of the code currently being run to support Clive DU PA v2.0, and (4) SIBERIA source code currently being run to support Clive DU PA v2.0. These will greatly expedite our review of the erosion modeling:

Energy*Solutions* is developing information in response to Request O-2 and will submit it to the director under separate cover.

¹ Hansen, D.J. "Federal Cell Facility Application Request for Information." via DRC-2023-000525 from the Utah Division of Waste Management and Radiation Control to Vern Rogers of Energy*Solutions*, January 19, 2023.

² Rogers, V.C. "Radioactive Material License Application for a Federal Cell Facility Submitted under Permanent Claim of Business Confidentiality." (CD-2022-142), Letter from EnergySolutions to Doug Hansen of Utah's Division of Waste Management and Radiation Control, August 4, 2022.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 2 of 7

O-3: In order to conduct an independent review on the SIBERIA modeling, please provide the SIBERIA input/output files used for the Clive DU PA v2.0.:

Energy*Solutions* is developing information in response to Request O-3 and will submit it to the director under separate cover.

O-4: A single value is specified for many of the parameter values input to SIBERIA that are uncertain. For example, NUREG/CR-7200 explores a range of values of n1 and m1. Whereas Clive DU PA v2.0 uses one set of n1 and m1 values and a very limited range of beta1 values. Please conduct a quantitative sensitivity analysis on the parameters that are most uncertain and that the results are most sensitive to:

Energy*Solutions* is developing information in response to Request O-4 and will submit it to the director under separate cover.

O-5: NUREG/CR-7200 discusses how a SIBERIA model is calibrated using regressions of beta1, m1, and n1 values. Please describe quantitatively how the SIBERIA model was calibrated to measured data for the Clive DU PA v2.0:

Energy*Solutions* is developing information in response to Request O-5 and will submit it to the director under separate cover.

O-6: Some parameters can be grid resolution dependent (e.g., the hillslope diffusivity parameter). Please describe whether any grid convergence testing was performed and, if not, how the grid spacing in the SIBERIA model was determined to be sufficiently small:

Energy*Solutions* is developing information in response to Request O-6 and will submit it to the director under separate cover.

O-7: The DU PA v2.0 uses a mean flow in the analysis but refers to threshold flow. Somewhat outdated literature is cited in this discussion. Thresholds are important in gully formation and considering the full distribution of events, particularly events of significance changes as the landscape changes. Please clarify the role of mean flow assumptions versus threshold in the SIBERIA modeling:

Energy*Solutions* is developing information in response to Request O-7 and will submit it to the director under separate cover.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 3 of 7

O-8: It is unclear whether a roughness value for the initial topography was assigned in the SIBERIA model. Formation of rills/gullies often require some roughness to initiate (otherwise the channelization process has a hard time initiating). Please clarify whether a roughness value was assigned in the initial topography, and if not, provide the justification for not including the roughness and if it was included, please justify the assigned value.:

Energy*Solutions* is developing information in response to Request O-8 and will submit it to the director under separate cover.

Appendix D: Geotechnical and Seismic Engineering Evaluations

D-2: <u>Evaluate Uncertainty in Engineering Properties</u>. The geotechnical analyses presented in Appendix D as a basis for the proposed Federal Cell have evaluated expected conditions using engineering properties obtained during past geotechnical explorations at the site and from the literature. Geotechnical properties are inherently spatially variable, and the spatial variability will affect the outcomes of the analyses. Understanding the impact of spatial variability on geotechnical stability is necessary to evaluate the efficacy of the Federal Cell. The Division requests a quantitative evaluation of the sensitivity of each of the geotechnical analyses to uncertainty in the engineering properties by varying the engineering properties used in the analyses two standard deviations above and below the mean.:

To evaluate the uncertainty in engineering properties for geotechnical stability and account for spatial variability in the subsurface, Energy*Solutions* directed Geosyntec to perform a statistical analysis of data collected across the Clive Facility during past geotechnical explorations. The statistical analysis of the various geotechnical material properties for the subsurface units (Unit 1 through 4) relied on in situ measurements and observations and geotechnical laboratory testing results from samples collected during drilling for the following borings:

- B-1 & B-2 (AMEC, 2004);
- SC-1, -7, -8, -10 & SLC-84 (D&M, 1984);
- GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, -38, -41, -55, DH-33, -48, -51 (Bingham Environmental, 1992); and
- DH-1 (AGRA, 1999).

These borings were selected based on their relative location to the Federal Cell and the availability of meaningful data (i.e., SPT blow counts, laboratory testing). Where robust laboratory testing was limited, the development of material

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 4 of 7

properties for the statistical analysis relied on applicable empirical correlations published in literature.

In response to this request, a statistical evaluation of the engineering properties using mean ± 2 standard deviations for sensitivity analyses is developed to consider the potential for underestimating the actual average value of the parameter due to the limited dataset analyzed, assess the potential for lower average values, and evaluate the sensitivity of the geotechnical analyses to these variable properties. A statistical evaluation of data using median and percentile values (or combining median and standard deviation) yields representative values for real physical data with limited number of data points, because median is the 50^{th} percentile data corresponding to an actual data point.

Mean central value estimates using ± 2 standard deviations (which statistically captures 95% of the data within the 2.5th and 97.5th percentile range) are highly affected by the presence and number of very large or very small magnitude values in datasets and generally not representative of realistic conditions when conducting sensitivity analyses (i.e., produces negative values, significantly lower than physically reasonable minimum values, or not values uncharacteristic for associated soil types). By contrast, it is common geotechnical engineering practice to consider distributions based on central values ± 1 standard deviations (which corresponds to 16th and 84th percentile - applicable to sensitivity analyses) in analysis of extreme conditions.

The use of ± 1 standard deviation is more characteristic of the typical range of soil properties and the subsurface conditions across the Clive Facility, while still sufficiently conservative to run produce meaningful sensitivity analyses for the associated geotechnical evaluations (i.e., stability and settlement). Following development of the material property data set, each estimated value is plotted by depth and adjacent the median, ± 1 standard deviation, 33^{rd} percentile (or 66^{th} percentile for compressibility parameters), and the previously selected parameter value for the subsurface unit (Unit 1 through 4). The visual representation of the statistical analysis for each material property is presented on Figures 3 - 10 of the revised Report in Appendix D to the Application (see "GEOTECNICAL ENGINEERING EVALUATIONS FOR FEDERAL CELL AT THE CLIVE FACILITY - CLIVE, UTAH," dated revised on January 18, 2023). Discussion related to the statistical analysis is found in Sections 4.2.1 and 5.8 of Appendix D, with the associated slope stability and settlement sensitivity analyses results summarized in Section 4.8.1, 4.9.1, and 5.8 and Attachment B2 and D2 of the revised Report in Appendix D.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 5 of 7

Additional liquefaction triggering analyses is also performed of the sand-like Unit 3 soils during a groundwater rise event to account for spatial variability beneath the proposed Federal Cell by performing the Idriss and Boulanger (2008) method with SPT-blow counts documented in boring logs GW-17A, -18, 19-A, -19B, -25, -26, -27, and -28 (Bingham Environmental, 1992). The previous analysis only included data from logs GW-36, -37, and -38 drilled directly beneath the proposed Federal Cell. The additional logs were selected based on proximity to the Federal Cell and availability of data (i.e., SPT blow counts, rig and sampler information for correction, groundwater elevation, etc.). Results of the extended liquefaction triggering analysis are documented in Section 6.3, Figure 11, and Attachment E1 of the revised Report in Appendix D. In addition to the extended liquefaction triggering analysis, the liquefied residual strength of Unit 3 was also analyzed for a post-earthquake slope stability analysis, documented in Section 4.12 and Attachment B of the revised Report in Appendix D.

Additional seismic slope stability or deformation analyses with lower bound sensitivity parameters do not inform understanding of the sensitivity for decision making. As presented in Section 4.2 of the revised Report in Appendix D, the shear strength parameters are conservative for stability and seismic analyses because the undrained shear strength of fine-grained soils increases as the waste is placed and the fine-grained soils consolidate. For example, the minimum effective stress on top of Unit 4 and Unit 2, fine-grained soils, will be approximately 6,300 and 7,900 pounds per square foot (psf) at final build-out and assuming only 90% consolidation takes place, which is anticipated to occur within 1 year of waste placement, prior to the design earthquake the preconsolidation pressures on top of these units would be 5,670 and 7,110 psf. Using SHANSEP's formulation for estimating shear strength of fine-grained soils, the undrained shear strength on top of these layers is estimated as 1,475 and 1,850 psf, respectively. These values are significantly greater than the undrained shear strength values, 1,000 and 1,500 psf, as summarized in Table 2-1 in the revised Report in Appendix D. Therefore, additional sensitivity analyses of seismic slope stability are unnecessary.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 6 of 7

D-3: <u>Evaluate Static and Seismic Stability of Internal Slopes</u>. The geotechnical analyses in Appendix D have been conducted in the context of global stability using the build out geometry. Case histories have shown, however, that stability failures in waste containment systems often occur within internal slopes during operations (e.g., during filling). The potential for internal slope failures needs to be evaluated, and any vulnerable internal slope geometries identified. Please evaluate quantitatively the static stability of a range of likely scenarios for internal slopes. Identify critical internal slopes geometries, if any, that are prone to stability failure:

Based on planned waste placement activities and configuration of the proposed Federal Cell, the critical geometry for interim stability is the excavation into native soils prior to waste placement. Interim slope stability analyses for short-term (undrained strengths for clay-like soils) were performed to address item D-3. The analysis is summarized in Section 4.8.2 with supporting results provided in Attachment B3 of the revised Report in Appendix D. Since this analysis evaluates a temporary slope, seismic deformation is not evaluated. If a seismic event occurs during a temporary slope condition, deformation and resulting deficiencies will be corrected by Energy*Solutions* prior to continued construction of the Federal Cell.

D-4: Evaluate Blow Counts Using Appropriate Hammer Correction Factor and Reevaluate Geotechnical Analyses. The standard penetration testing (SPT) hammer correction factor used to adjust the blow count data may not have been appropriate for the hammer used for the geotechnical exploration activities. Determine the type of hammer (specifically that of a rope and cathead or one using an automatic system) used for standard penetration testing in the past geotechnical exploration activities and the appropriate hammer correction factor to be used to adjust the blow counts for the hammer that was employed. If necessary, re-compute the blow counts used in the analyses and re-conduct the geotechnical analyses using blow counts updated with a revised hammer correction factor. In addition, if geotechnical parameters were developed from empirical relationships using SPT blow counts, confirm the appropriate SPT blow counts were utilized in developing those geotechnical parameters.:

As discussed in Section 4.2 of the revised Report in Appendix D, the material properties used in the analyses are based on review of available geotechnical lab data, boring logs, and previous parameterization of the adjacent Class A West. Therefore, those parameters are not strictly based on Standard Proctor Test (SPTD) blow counts. As part of the statistical analysis completed for Request Item D-2, SPT blow count data were collected for nearby borings:

• B-1 & B-2 (AMEC, 2004); and

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 7 of 7

• GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, and -38 (Bingham Environmental, 1992).

The SPT blow counts provided from these borings are used to estimate material properties, including friction angle, undrained shear strength, and effective cohesion using published empirical correlations with N-value, N₆₀, or (N1)₆₀. To do this, the appropriate information from the boring logs is used to correct SPT blow counts with the characteristic correction factors (i.e., hammer efficiency, borehole diameter, rod length, etc.). This data and the selected value of the analyses are provided in Figure 3 through 10 of the revised Report in Appendix D. It is noted that the selected values in the analyses typically fall below the median value for each of the parameters, therefore, Geosyntec did not identify a need to re-conduct the geotechnical analyses. To further support a conclusion that the sensitivity analyses are conservative when using ± 1 standard deviation property values for slope stability and settlement, additional liquefaction triggering analyses for the sand-like Unit 3 soils, and post-earthquake stability analyses with residual strengths for Unit 4, Unit 3, and Unit 2 soils capture the potential for uncertainty and variability in the native soils' material parameterization.

Additional references reflected in these responses and the revisions to Appendix D are also attached.

If you have further questions regarding the responses to the director's requests of DRC-2022-023940 and revision of Appendix D to the Federal Cell Facility Radioactive Material License Application, please contact me at (801) 649-2000.

Sincerely,

1 1

C. Rogers

Vern C. Rogers Director, Regulatory Affairs

enclosure

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

February 1, 2023

CD-2023-025

Mr. Doug Hansen, Director Division of Waste Management and Radiation Control P.O. Box 144880 Salt Lake City, UT 84114-4880

Re: Responses to Federal Cell Facility Application Request for Information - DRC-2022-023940

Dear Mr. Hansen,

Energy*Solutions* hereby responds to the Utah Division of Waste Management and Radiation Control's December 19, 2022 Request for Information (RFI) on our Federal Cell Facility Application.¹ A response is provided for each request using the Director's assigned reference number. A revised copy of Appendix D, *Geotechnical Seismic Engineering Evaluations of the FCF* and associated references reflecting responses to the Director's request are attached. This revised Appendix is not subject to the Permanent Claim of Business Confidentiality previously asserted.²

Appendix O: Erosion Modeling

O-2: After downloading SIBERIA from the public website, it did not compile, it may be because it has not been revised for modern architecture. The Division requests that EnergySolutions please provide: (1) Information pertaining to the operating system on which the SIBERIA code was run, (2) Information pertaining to the complier used to compile the SIBERIA source code, (3) SIBERIA compiled version of the code currently being run to support Clive DU PA v2.0, and (4) SIBERIA source code currently being run to support Clive DU PA v2.0. These will greatly expedite our review of the erosion modeling:

Energy*Solutions* is developing information in response to Request O-2 and will submit it to the director under separate cover.

¹ Hansen, D.J. "Federal Cell Facility Application Request for Information." via DRC-2023-000525 from the Utah Division of Waste Management and Radiation Control to Vern Rogers of Energy*Solutions*, January 19, 2023.

² Rogers, V.C. "Radioactive Material License Application for a Federal Cell Facility Submitted under Permanent Claim of Business Confidentiality." (CD-2022-142), Letter from EnergySolutions to Doug Hansen of Utah's Division of Waste Management and Radiation Control, August 4, 2022.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 2 of 7

O-3: In order to conduct an independent review on the SIBERIA modeling, please provide the SIBERIA input/output files used for the Clive DU PA v2.0.:

Energy*Solutions* is developing information in response to Request O-3 and will submit it to the director under separate cover.

O-4: A single value is specified for many of the parameter values input to SIBERIA that are uncertain. For example, NUREG/CR-7200 explores a range of values of n1 and m1. Whereas Clive DU PA v2.0 uses one set of n1 and m1 values and a very limited range of beta1 values. Please conduct a quantitative sensitivity analysis on the parameters that are most uncertain and that the results are most sensitive to:

Energy*Solutions* is developing information in response to Request O-4 and will submit it to the director under separate cover.

O-5: NUREG/CR-7200 discusses how a SIBERIA model is calibrated using regressions of beta1, m1, and n1 values. Please describe quantitatively how the SIBERIA model was calibrated to measured data for the Clive DU PA v2.0:

Energy*Solutions* is developing information in response to Request O-5 and will submit it to the director under separate cover.

O-6: Some parameters can be grid resolution dependent (e.g., the hillslope diffusivity parameter). Please describe whether any grid convergence testing was performed and, if not, how the grid spacing in the SIBERIA model was determined to be sufficiently small:

Energy*Solutions* is developing information in response to Request O-6 and will submit it to the director under separate cover.

O-7: The DU PA v2.0 uses a mean flow in the analysis but refers to threshold flow. Somewhat outdated literature is cited in this discussion. Thresholds are important in gully formation and considering the full distribution of events, particularly events of significance changes as the landscape changes. Please clarify the role of mean flow assumptions versus threshold in the SIBERIA modeling:

Energy*Solutions* is developing information in response to Request O-7 and will submit it to the director under separate cover.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 3 of 7

O-8: It is unclear whether a roughness value for the initial topography was assigned in the SIBERIA model. Formation of rills/gullies often require some roughness to initiate (otherwise the channelization process has a hard time initiating). Please clarify whether a roughness value was assigned in the initial topography, and if not, provide the justification for not including the roughness and if it was included, please justify the assigned value.:

Energy*Solutions* is developing information in response to Request O-8 and will submit it to the director under separate cover.

Appendix D: Geotechnical and Seismic Engineering Evaluations

D-2: Evaluate Uncertainty in Engineering Properties. The geotechnical analyses presented in Appendix D as a basis for the proposed Federal Cell have evaluated expected conditions using engineering properties obtained during past geotechnical explorations at the site and from the literature. Geotechnical properties are inherently spatially variable, and the spatial variability will affect the outcomes of the analyses. Understanding the impact of spatial variability on geotechnical stability is necessary to evaluate the efficacy of the Federal Cell. The Division requests a quantitative evaluation of the sensitivity of each of the geotechnical analyses to uncertainty in the engineering properties by varying the engineering properties used in the analyses two standard deviations above and below the mean.:

To evaluate the uncertainty in engineering properties for geotechnical stability and account for spatial variability in the subsurface, Energy*Solutions* directed Geosyntec to perform a statistical analysis of data collected across the Clive Facility during past geotechnical explorations. The statistical analysis of the various geotechnical material properties for the subsurface units (Unit 1 through 4) relied on in situ measurements and observations and geotechnical laboratory testing results from samples collected during drilling for the following borings:

- B-1 & B-2 (AMEC, 2004);
- SC-1, -7, -8, -10 & SLC-84 (D&M, 1984);
- GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, -38, -41, -55, DH-33, -48, -51 (Bingham Environmental, 1992); and
- DH-1 (AGRA, 1999).

These borings were selected based on their relative location to the Federal Cell and the availability of meaningful data (i.e., SPT blow counts, laboratory testing). Where robust laboratory testing was limited, the development of material

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 4 of 7

properties for the statistical analysis relied on applicable empirical correlations published in literature.

In response to this request, a statistical evaluation of the engineering properties using mean ± 2 standard deviations for sensitivity analyses is developed to consider the potential for underestimating the actual average value of the parameter due to the limited dataset analyzed, assess the potential for lower average values, and evaluate the sensitivity of the geotechnical analyses to these variable properties. A statistical evaluation of data using median and percentile values (or combining median and standard deviation) yields representative values for real physical data with limited number of data points, because median is the 50^{th} percentile data corresponding to an actual data point.

Mean central value estimates using ± 2 standard deviations (which statistically captures 95% of the data within the 2.5th and 97.5th percentile range) are highly affected by the presence and number of very large or very small magnitude values in datasets and generally not representative of realistic conditions when conducting sensitivity analyses (i.e., produces negative values, significantly lower than physically reasonable minimum values, or not values uncharacteristic for associated soil types). By contrast, it is common geotechnical engineering practice to consider distributions based on central values ± 1 standard deviations (which corresponds to 16th and 84th percentile - applicable to sensitivity analyses) in analysis of extreme conditions.

The use of ± 1 standard deviation is more characteristic of the typical range of soil properties and the subsurface conditions across the Clive Facility, while still sufficiently conservative to run produce meaningful sensitivity analyses for the associated geotechnical evaluations (i.e., stability and settlement). Following development of the material property data set, each estimated value is plotted by depth and adjacent the median, ± 1 standard deviation, 33^{rd} percentile (or 66^{th} percentile for compressibility parameters), and the previously selected parameter value for the subsurface unit (Unit 1 through 4). The visual representation of the statistical analysis for each material property is presented on Figures 3 - 10 of the revised Report in Appendix D to the Application (see "GEOTECNICAL ENGINEERING EVALUATIONS FOR FEDERAL CELL AT THE CLIVE FACILITY - CLIVE, UTAH," dated revised on January 18, 2023). Discussion related to the statistical analysis is found in Sections 4.2.1 and 5.8 of Appendix D, with the associated slope stability and settlement sensitivity analyses results summarized in Section 4.8.1, 4.9.1, and 5.8 and Attachment B2 and D2 of the revised Report in Appendix D.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 5 of 7

Additional liquefaction triggering analyses is also performed of the sand-like Unit 3 soils during a groundwater rise event to account for spatial variability beneath the proposed Federal Cell by performing the Idriss and Boulanger (2008) method with SPT-blow counts documented in boring logs GW-17A, -18, 19-A, -19B, -25, -26, -27, and -28 (Bingham Environmental, 1992). The previous analysis only included data from logs GW-36, -37, and -38 drilled directly beneath the proposed Federal Cell. The additional logs were selected based on proximity to the Federal Cell and availability of data (i.e., SPT blow counts, rig and sampler information for correction, groundwater elevation, etc.). Results of the extended liquefaction triggering analysis are documented in Section 6.3, Figure 11, and Attachment E1 of the revised Report in Appendix D. In addition to the extended liquefaction triggering analysis, the liquefied residual strength of Unit 3 was also analyzed for a post-earthquake slope stability analysis, documented in Section 4.12 and Attachment B of the revised Report in Appendix D.

Additional seismic slope stability or deformation analyses with lower bound sensitivity parameters do not inform understanding of the sensitivity for decision making. As presented in Section 4.2 of the revised Report in Appendix D, the shear strength parameters are conservative for stability and seismic analyses because the undrained shear strength of fine-grained soils increases as the waste is placed and the fine-grained soils consolidate. For example, the minimum effective stress on top of Unit 4 and Unit 2, fine-grained soils, will be approximately 6,300 and 7,900 pounds per square foot (psf) at final build-out and assuming only 90% consolidation takes place, which is anticipated to occur within 1 year of waste placement, prior to the design earthquake the preconsolidation pressures on top of these units would be 5,670 and 7,110 psf. Using SHANSEP's formulation for estimating shear strength of fine-grained soils, the undrained shear strength on top of these layers is estimated as 1,475 and 1,850 psf, respectively. These values are significantly greater than the undrained shear strength values, 1,000 and 1,500 psf, as summarized in Table 2-1 in the revised Report in Appendix D. Therefore, additional sensitivity analyses of seismic slope stability are unnecessary.

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 6 of 7

D-3: <u>Evaluate Static and Seismic Stability of Internal Slopes</u>. The geotechnical analyses in Appendix D have been conducted in the context of global stability using the build out geometry. Case histories have shown, however, that stability failures in waste containment systems often occur within internal slopes during operations (e.g., during filling). The potential for internal slope failures needs to be evaluated, and any vulnerable internal slope geometries identified. Please evaluate quantitatively the static stability of a range of likely scenarios for internal slopes. Identify critical internal slopes geometries, if any, that are prone to stability failure:

Based on planned waste placement activities and configuration of the proposed Federal Cell, the critical geometry for interim stability is the excavation into native soils prior to waste placement. Interim slope stability analyses for shortterm (undrained strengths for clay-like soils) were performed to address item D-3. The analysis is summarized in Section 4.8.2 with supporting results provided in Attachment B3 of the revised Report in Appendix D. Since this analysis evaluates a temporary slope, seismic deformation is not evaluated. If a seismic event occurs during a temporary slope condition, deformation and resulting deficiencies will be corrected by Energy*Solutions* prior to continued construction of the Federal Cell.

D-4: Evaluate Blow Counts Using Appropriate Hammer Correction Factor and Reevaluate Geotechnical Analyses. The standard penetration testing (SPT) hammer correction factor used to adjust the blow count data may not have been appropriate for the hammer used for the geotechnical exploration activities. Determine the type of hammer (specifically that of a rope and cathead or one using an automatic system) used for standard penetration testing in the past geotechnical exploration activities and the appropriate hammer correction factor to be used to adjust the blow counts for the hammer that was employed. If necessary, re-compute the blow counts used in the analyses and re-conduct the geotechnical analyses using blow counts updated with a revised hammer correction factor. In addition, if geotechnical parameters were developed from empirical relationships using SPT blow counts, confirm the appropriate SPT blow counts were utilized in developing those geotechnical parameters.:

As discussed in Section 4.2 of the revised Report in Appendix D, the material properties used in the analyses are based on review of available geotechnical lab data, boring logs, and previous parameterization of the adjacent Class A West. Therefore, those parameters are not strictly based on Standard Proctor Test (SPTD) blow counts. As part of the statistical analysis completed for Request Item D-2, SPT blow count data were collected for nearby borings:

• B-1 & B-2 (AMEC, 2004); and

Mr. Doug Hansen February 1, 2023 CD-2023-025 Page 7 of 7

• GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, and -38 (Bingham Environmental, 1992).

The SPT blow counts provided from these borings are used to estimate material properties, including friction angle, undrained shear strength, and effective cohesion using published empirical correlations with N-value, N_{60} , or (N1)₆₀. To do this, the appropriate information from the boring logs is used to correct SPT blow counts with the characteristic correction factors (i.e., hammer efficiency, borehole diameter, rod length, etc.). This data and the selected value of the analyses are provided in Figure 3 through 10 of the revised Report in Appendix D. It is noted that the selected values in the analyses typically fall below the median value for each of the parameters, therefore, Geosyntec did not identify a need to re-conduct the geotechnical analyses. To further support a conclusion that the sensitivity analyses are conservative when using ± 1 standard deviation property values for slope stability and settlement, additional liquefaction triggering analyses for the sand-like Unit 3 soils, and post-earthquake stability analyses with residual strengths for Unit 4, Unit 3, and Unit 2 soils capture the potential for uncertainty and variability in the native soils' material parameterization.

Additional references reflected in these responses and the revisions to Appendix D are also attached.

If you have further questions regarding the responses to the director's requests of DRC-2022-023940 and revision of Appendix D to the Federal Cell Facility Radioactive Material License Application, please contact me at (801) 649-2000.

Sincerely,

un C. Rogers

Vern C. Rogers Director, Regulatory Affairs

enclosure

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

APPENDIX D

FEDERAL CELL FACILITY

GEOTECHNICAL AND SEISMIC ENGINEERING EVALUATIONS

Energy*Solutions*' Federal Cell Facility design is primarily an above-grade landfill embankment. The Federal Cell Facility will be constructed using materials native to the site or found near the site. Synthetic materials are also used in the construction of the mixed waste embankment. Engineered features of the embankments are designed based upon State of Utah regulations, NRC guidance, Environmental Protection Agency guidance, and Energy*Solutions*' experience at this location. UAC R313-25-23 requires principal design features to be selected for the Federal Cell Facility that promote long-term stability. The geotechnical stability of the Federal Cell Facility has been evaluated by Geosyntec (report presented in this Appendix).

215 South State Street, Suite 500 Salt Lake City, UT 84111 (801) 618-0483 www.geosyntec.com

Mr. Vern Rogers Director of Regulatory Affairs EnergySolutions, LLC 299 South Main Street, Suite 1700 Salt Lake City, UT 84111

Subject: Response to DWMRC RFI (DRC-2002-024035) dated 19 December 2022 Federal Cell at Clive Facility Clive, Utah

Dear Vern,

Geosyntec Consultants (Geosyntec) has prepared this transmittal letter in response to the Request for Information (RFI) from the Division of Waste Management and Radiation Control (DWMRC) dated 19 December 2022 regarding the Federal Cell Facility Application dated 4 August 2022. The following sections of this letter provide Geosyntec's response to requests for Appendix D of the application. The requests for Appendix D are numbered as D-2, D-3, and D-4 in the RFI. Geosyntec provides each request and our response to each request below. We refer the reader to the appropriate section of the revised Appendix D, "Geotechnical Engineering Evaluations for Federal Cell at the Clive Facility," (Geosyntec, 2022) calculation package, where additional analyses are provided. The revised calculation package is appended to this letter.

GEOSYNTEC'S RESPONSE TO REQUEST FOR INFORMATION

DWMRC Request Item D-2:

"Evaluate Uncertainty in Engineering Properties. The geotechnical analyses presented in Appendix D as a basis for the proposed Federal Cell have evaluated expected conditions using engineering properties obtained during past geotechnical explorations at the site and from the literature. Geotechnical properties are inherently spatially variable, and the spatial variability will affect the outcomes of the analyses. Understanding the impact of spatial variability on geotechnical stability is necessary to evaluate the efficacy of the Federal Cell. The Division requests a quantitative evaluation of the sensitivity of each of the geotechnical analyses to uncertainty in the engineering properties by varying the engineering properties used in the analyses two standard deviations above and below the mean."

Geosyntec Response to Item D-2:

To evaluate the uncertainty in engineering properties for geotechnical stability and account for spatial variability in the subsurface, Geosyntec performed a statistical analysis of the existing data collected across the Clive Facility during past geotechnical explorations. The statistical analysis of the various geotechnical material properties for the subsurface units (Unit 1 through 4) relied on in situ measurements and observations and geotechnical laboratory testing results from samples collected during drilling for the following borings:

- B-1 & B-2 (AMEC, 2004);
- SC-1, -7, -8, -10 & SLC-84 (D&M, 1984);
- GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, -38, -41, -55, DH-33, -48, -51 (Bingham Environmental, 1992); and
- DH-1 (AGRA, 1999).

These borings were selected based on their relative location to the Federal Cell and the availability of meaningful data (i.e., SPT blow counts, laboratory testing). Where robust laboratory testing was limited, the development of material properties for the statistical analysis relied on applicable empirical correlations published in literature.

RFI Item D-2 requests a statistical evaluation of the engineering properties using mean ± 2 standard deviations for sensitivity analyses. The purpose of statistically evaluating the engineering properties used for geotechnical evaluations is to consider the potential for underestimating the actual average value of the parameter due to the limited dataset analyzed, assess the potential for lower average values, and evaluate the sensitivity of the geotechnical analyses to these variable properties. The statistical evaluation of data can be done by using mean and standard deviation terms. However, statistical analyses using median and percentile values (or combining median and standard deviation) generally yield more realistic values for real physical data with limited number of data points because median is the 50th percentile data corresponding to an actual data point whereas mean is affected by the presence and number of very large or very small magnitude values in the dataset that may not be realistic. It is common in geotechnical engineering practice to consider a 33rd percentile data point as the lower bound or conservative estimate for the average value of the parameter. It is also common to consider mean (or median) ± 1 standard deviation which corresponds to 16th and 84th percentile for extreme condition analyses which can be considered applicable to a sensitivity analysis. The use of a range corresponding to ± 2 standard deviations statistically captures 95% of the data within the 2.5th and 97.5th percentile range. Considering mean -2 standard deviation for estimating the lower bound average value of a parameter for a sensitivity analysis is not realistic in our opinion. Geosyntec checked the +2

standard deviations over median for several of the parameters. Due to the large value of the standard deviation, ± 2 standard deviations did not represent meaningful parameter values for the subsequent engineering evaluations and was not relevant to the data set (i.e., the value was negative in value, significantly lower than the minimum value, or not characteristic of the soil type).

The use of ± 1 standard deviation was more characteristic of the typical range of soil property values and our understanding of the subsurface conditions across the site, while still conservative enough to run meaningful sensitivity analyses for the associated geotechnical evaluations (i.e., stability and settlement). Following development of the material property data set, each estimated value was plotted by depth and adjacent the median, ± 1 standard deviation, 33^{rd} percentile (or 66^{th} percentile for compressibility parameters), and the previously selected parameter value for the subsurface unit (Unit 1 through 4). The visual representation of the statistical analysis for each material property is presented on **Figures 3** – **10** of the revised calculation package appended to this letter. Discussion related to the statistical analysis can be found in **Sections 4.2.1 and 5.8**, with the associated slope stability and settlement sensitivity analyses results summarized in **Section 4.8.1, 4.9.1, and 5.8** and **Attachment B2 and D2** of the revised package.

Geosyntec performed additional liquefaction triggering analyses of the sand-like Unit 3 soils during a groundwater rise event to account for spatial variability beneath the proposed cell by performing the Idriss and Boulanger (2008) method with SPT-blow counts documented in boring logs GW-17A, -18, 19-A, -19B, -25, -26, -27, and -28 (Bingham Environmental, 1992). The previous analysis only included data from logs GW-36, -37, and -38 drilled directly beneath the proposed Federal Cell. The additional logs were selected based on proximity to the Federal Cell and availability of data (i.e., SPT blow counts, rig and sampler information for correction, groundwater elevation, etc.). Results of the extended liquefaction triggering analysis are documented in **Section 6.3, Figure 11, and Attachment E1** of the revised package. In addition to the extended liquefaction triggering analysis, Geosyntec estimated the liquefied residual strength of Unit 3 for a post-earthquake slope stability analysis, documented in **Section 4.12 and Attachment B** of the revised package.

Geosyntec did not identify the need to conduct additional seismic slope stability or deformation analyses with lower bound sensitivity parameters resulting from the data statistics. As discussed in Section 4.2 of our report, the shear strength parameters used are considered conservative because the undrained shear strength of fine-grained soils will increase as the waste is placed and the finegrained soils consolidate. These parameters are especially conservative for a long-term seismic analysis. For example, the minimum effective stress on top of Unit 4 and Unit 2, fine-grained soils, will be approximately 6300 and 7900 psf at final build-out and assuming only 90% consolidation

takes place, which is anticipated to occur within 1 year of waste placement, prior to the design earthquake the preconsolidation pressures on top of these units would be 5,670 and 7,110 psf. Using SHANSEP's formulation for estimating shear strength of fine-grained soils, the undrained shear strength on top of these layers is estimated as 1,475 and 1,850 psf, respectively. These values are significantly greater than the undrained shear strength values, 1,000 and 1,500 psf, used in our analyses as summarized in Table 2-1 in our report. Therefore, additional sensitivity analyses of seismic slope stability are not considered necessary

DWMRC Request Item D-3:

"Evaluate Static and Seismic Stability of Internal Slopes. The geotechnical analyses in Appendix D have been conducted in the context of global stability using the build out geometry. Case histories have shown, however, that stability failures in waste containment systems often occur within internal slopes during operations (e.g., during filling). The potential for internal slope failures needs to be evaluated, and any vulnerable internal slope geometries identified. Please evaluate quantitatively the static stability of a range of likely scenarios for internal slopes. Identify critical internal slopes geometries, if any, that are prone to stability failure."

Geosyntec Response to Item D-3:

Based on conversations with EnergySolutions regarding their waste placement activities and configuration of the proposed Federal Cell, the critical geometry for interim stability was identified as the excavation into native soils prior to waste placement. Interim slope stability analyses for short-term (undrained strengths for clay-like soils) were performed to address this RFI item. The analysis is summarized in **Section 4.8.2** with supporting results provided in **Attachment B3** of the revised calculation package. Since this is a temporary slope condition, seismic deformation is not typically evaluated. In the event that a seismic event occurs during the temporary slope condition, deformation and resulting deficiencies shall be corrected prior to continued construction of the cell.

DWMRC Request Item D-4:

"Evaluate Blow Counts Using Appropriate Hammer Correction Factor and Re-evaluate Geotechnical Analyses. The standard penetration testing (SPT) hammer correction factor used to adjust the blow count data may not have been appropriate for the hammer used for the geotechnical exploration activities. Determine the type of hammer (specifically that of a rope and cathead or one using an automatic system) used for standard penetration testing in the past geotechnical exploration activities and the appropriate hammer correction factor to be used to

Geosyntec^D consultants

adjust the blow counts for the hammer that was employed. If necessary, re-compute the blow counts used in the analyses and re-conduct the geotechnical analyses using blow counts updated with a revised hammer correction factor. In addition, if geotechnical parameters were developed from empirical relationships using SPT blow counts, confirm the appropriate SPT blow counts were utilized in developing those geotechnical parameters."

Geosyntec Response to Item D-4:

As discussed in Section 4.2 of our report, the material properties used in our analyses were based on our review of available geotechnical lab data, boring logs, and previous parameterization of the adjacent CAW performed. Therefore, those parameters were not strictly based on SPT blow counts. As part of the statistical analysis completed for RFI Item D-2, Geosyntec gathered all SPT blow count data from the following nearby borings:

- B-1 & B-2 (AMEC, 2004); and
- GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, and -38 (Bingham Environmental, 1992).

The SPT blow counts provided from these borings were used to estimate material properties, including friction angle, undrained shear strength, and effective cohesion through the use of published empirical correlations with N-value, N_{60} , or $(N_1)_{60}$. To do this, Geosyntec used appropriate information from the boring logs to correct SPT blow counts with the characteristic correction factors (i.e., hammer efficiency, borehole diameter, rod length, etc.). This data and the selected value of our analyses are provided in Figure 3 through 10 of the revised report. We noted that the selected values in our analyses typically fall below the median value for each of the parameter, therefore, Geosyntec did not identify a need to re-conduct the geotechnical analyses. To further bolster this conclusion, the sensitivity analyses with conservative ± 1 standard deviation property values for slope stability and settlement, additional liquefaction triggering analyses for the sand-like Unit 3 soils, and post-earthquake stability analyses with residual strengths for Unit 4, Unit 3, and Unit 2 soils capture the potential for uncertainty and variability in the native soils' material parameterization.

CLOSING

If you have any questions or require additional information regarding this submittal, please contact Madeline Downing at (650) 868-7913 or Keaton Botelho of Geosyntec at (858) 674-6559.

Madelifowing

Madeline Downing Engineer

Gengetin

Bora Baturay, Ph.D., P.E., G.E. Principal

Keaton Botelho, P.E. Principal

ATTACHMENTS:

Geotechnical Engineering Evaluations for the Federal Cell at the Clive Facility – Revision 2 (Geosyntec, 2023)

Geosyntec consultants

Client:	Energy Solutions	Project:	Federal Cell at Clive Facility	Pro	ject No.:	SLC1025		
Title of C	omputations	GEOTE	CHNICAL ENGINEE	RING EVA	LUATI	ONS		
Computat	ions by:	Signature	Madeliform	3/11/20	21			
		Printed Name	Madeline Downing	5	Date			
		Title	Engineer					
Assumption	ons and s Checked	Signature	Despating		3/17/202	21		
by:	es Checked	Printed Name	Bora Baturay, PhD, G.E		Date			
(peer revi	ewer)	Title	Principal					
Computat		Signature	Bengsting	3/17/2021				
Checked I	by:	Printed Name	Bora Baturay, PhD, G.E	Date				
		Title	Principal					
Computat backchecl		Signature	Madelipown	ng	3/18/20	21		
(originato		Printed Name	Madeline Downing	3	Date			
		Title	Engineer					
Approved (pm or de		Signature Printed Name	MA	3/18/2021				
a	8)	Title	Keaton Botelho, P.E.		Date			
		The	Senior Engineer					
Approva	al notes:							
Revisions	(number and i	nitial all revisior	ns)					
No.	Sheet	Date	By	Checked by		Approval		
1	ALL	10/7/22	2MD	MD		MD		
2	ALL	1/18/23	MD	BB		KB		

COMPUTATION COVER SHEET

Geosyntec[▷] consultants 43 Page 1 of Written by: M. Downing Date: 3/11/2021 Reviewed **B. Baturay** Date: 3/17/21 by: Project/ Proposal No.: SLC1025 Client: Task No.: 01 ES Project: Federal Cell

GEOTECHNICAL ENGINEERING EVALUATIONS FOR FEDERAL CELL AT THE CLIVE FACILITY CLIVE, UTAH

Table of Contents

1.	Objective4	ł
2.	Background4	ł
3.	Site Characterization53.1Document Review3.2Subsurface Stratigraphy3.3Groundwater3.4Seismic Hazard Evaluation	5 5 8
4.	Slope Stability) 10 11 13 14
	 4.3 Federal Cell Cover and Base Liner System Material Properties	15 16 17 17 18 18 19 20 20 21 22 23 24
5.	Settlement Analysis 2 5.1 Previous Analyses 2 5.2 Compressibility Properties of Foundation Soils 2 5.3 Federal Cell Loading and Geometry 2	27 28

Geosyntec[▷]

consultants

							Page	2	of	43
Written l	oy: M.]	Downing		Date:	3/11/2021	Reviewed by:		iy Da	ate:	3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	sal No.: SL	C1025	Task N	lo.:	01

	5.4	Elastic Settlement (Immediate) of the Sand-Like Units (1 and 3)	
	5.5	Primary Consolidation	
	5.6	Secondary Compression	
	5.7	Consequences of Settlement	
	5.8	Consequences of Spatial Variability for Settlement	
6.	Liquefa	iction	
	-	Previous Analyses	
	6.2	Seismic Design Parameters	
	6.3	Liquefaction of Sand-Like Soils	
		6.3.1 Additional Liquefaction Analyses for Unit 3	
	6.4	Cyclic Softening of Clay-Like Soils	
7.	Conclu	sions	
	7.1	Global Static, Seismic Slope Stability and Deformation	
	7.2	Settlement	
	7.3	Liquefaction and Cyclic Softening	
8.	Referen	ices	41

Figures

Figure	1: Site Layout and Exploration Map
Figure	2: Subsurface Stratigraphy
Figure	3: Friction Angle Statistical Analysis
Figure	4: Effective Cohesion Statistical Analysis
Figure	5: Undrained Shear Strength Statistical Analysis
Figure	6: Virgin Compression Index Statistical Analysis
Figure	7: Recompression Index Statistical Analysis
Figure	8: Secondary Compression Index Statistical Analysis
Figure	9: Initial Void Ratio Statistical Analysis
Figure	10: Overconsolidation Ratio Statistical Analysis
Figure	11: Liquefaction Triggering Results for Sand-Like Unit 3 Soils

Attachments

Attachment A Supporting Documents

Attachment B Global Static and Seismic Slope Stability Results

Attachment B2 SLOPE/W Sensitivity Analysis Results

Geosyntec <a>>

consultants

					Page	3 of	43
Written by: M	. Downing	Date:	3/11/2021	Reviewed by:		y Date	: 3/17/21
Client: ES	Project: Federal Ce	11	Project/ Propo	osal No.: SL	C1025	Task No.	.: 01

Attachment B3 SLOPE/W Interim Stability Analysis Results

Attachment C Seismic Deformation Analysis

Attachment D Settlement Analysis

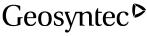
Attachment D2 Settlement Sensitivity Analysis Results

Attachment E Liquefaction Analysis

Attachment E2 Supplemental Liquefaction Analysis of Unit 3

				G	eosy	ntec
					cons	ultants
				Page	4 of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	•	y Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL	C1025	Task No.:	01

1. OBJECTIVE


The objective of this analysis is to evaluate the geotechnical engineering mechanisms related to the performance of the proposed Federal Cell at the EnergySolutions, LLC (EnergySolutions) Clive Facility in Clive, Utah. The geotechnical analyses performed for the Federal Cell include static and seismic stability, foundational soil settlement, and liquefaction triggering for the proposed embankment. The evaluations presented herein have been based on conservative approaches to evaluate this facility and are designed to capture the potential long-term changes over the design life. The analyses were performed in accordance with our proposal dated February 17, 2021.

A Request for Information (RFI) from the Division of Waste Management and Radiation Control (DWMRC) regarding the Federal Cell Facility Application dated 4 August 2022 was submitted to EnergySolutions on 19 December 2022. Geosyntec has prepared this revised report (Revision 2) to address the requests for Appendix D (Item D2 through D4) of the application.

2. BACKGROUND

Based on our understanding of the Federal Cell design, the intended waste to be placed in the containment cell includes depleted uranium (DU) stored in cylinders and drums and controlled low strength material (CLSM); a flowable fill which will be placed in between and around the cylinders and drums. According to the Radioactive Waste Inventory for Clive DU PA Model v1.4 (Neptune, 2015b), approximately 690,000 metric tons of the DU filled drums and cylinders are intended to be placed in the proposed cell. Existing grades at the proposed cell location range between 4,268 and 4,270 feet above mean sea level (amsl). The Design Drawings (EnergySolutions, 2020) suggest the average subgrade elevation of the proposed cell is approximately 4,261 feet amsl, which would be achieved by excavating approximately 7 to 9 feet below ground surface (bgs).

To support the design of the proposed Federal Cell, EnergySolutions and Neptune and Company, Inc. (Neptune) developed the Final Report for the Clive Depleted Uranium Performance Assessment (DU PA) and the DU PA Model v1.4 in 2015 and submitted it to the Utah Division of Waste Management and Radiation Control (DWMRC) for review. The DWMRC provided a review of the DU PA and documented their feedback in their Technical Report dated January 28, 2021 (DWMRC, 2021). EnergySolutions requested that Geosyntec provide assistance to respond to DWRMC's feedback and demonstrate compliance with the performance objectives of the Utah Administrative Code (UAC) R313-25-19 through 23 and 10 Code of Federal Regulations (CFR)

	Page 5 of	43
Written by: M. Downing	Date: 3/11/2021 Reviewed B. Baturay Date:	3/17/21
Client: ES Project: Federal Cell	Project/ Proposal No.: SLC1025 Task No.:	01

61.41 through 44, specifically the geotechnical stability evaluations. Geosyntec performed a review of the referenced Technical Report and has subsequently completed the following engineering evaluations to help address the technical issues identified by the DWMRC:

- <u>Global static slope stability of the proposed Federal Cell</u>: Short- and long-term stability including analysis of the various groundwater elevation conditions (current and potential groundwater level rise);
- <u>Seismic slope stability of the proposed Federal Cell</u>: Pseudostatic stability and deformation analysis of the most critical stability section;
- <u>Settlement of the proposed Federal Cell foundational soils</u>: Immediate and long-term settlement analysis including evaluation of embankment response to foundation settlement over the design life; and
- <u>Liquefaction</u>: Liquefaction triggering analysis caused by potential rise in groundwater elevation.

3. SITE CHARACTERIZATION

The subsurface conditions and proposed Federal Cell liner and cover system components were characterized based on our review of existing explorations, previous parameterizations performed for adjacent existing waste cells, and available data provided for our review. The following sections summarize the documents reviewed, subsurface stratigraphy characterization, groundwater conditions, and seismic design parameters used to perform our engineering evaluations presented in this calculation package.

3.1 **Document Review**

Extensive subsurface explorations have taken place at the Clive Facility dating back to 1984 and extending through 2020 (**Figure 1** presents a site layout of the explorations used in this evaluation). The following reports provided to us for review were utilized to characterize the subsurface stratigraphy beneath the proposed Federal Cell, define the groundwater levels critical for the engineering evaluations, and define the seismic hazard parameters at the facility:

• Hydrogeologic Report for the Clive Facility prepared by Bingham Environmental (Bingham) dated 1992 (including Addendum 1 and 2);

						G		•	ntec ⁽ iltants	>
						Page	6	of	43	
ı by:	M. Downing		Date:	3/11/2021	Reviewed by:	B. Batura	У	Date:	3/17/21	
E	S Project:	Federal Cell		Project/ Propo	osal No.: SL	C1025	Та	sk No.:	01	

- Combined Embankment Study for Class A Waste Embankment (CAW) (just North of the proposed Federal Cell) prepared by AMEC Earth & Environmental (AMEC) dated December 2005;
- Geotechnical Update Report for CAW prepared by AMEC dated February 2011;
- Seismic Hazard Evaluation/Seismic Stability Analysis Update for CAW prepared by AMEC dated April 2012; and
- Phase 1 Basal Depth Aquifer Study for Clive Facility prepared by Stantec Consulting Services, Inc. (Stantec) dated September 2020.

3.2 <u>Subsurface Stratigraphy</u>

Written

Client:

Based on our review of the referenced Hydrogeologic Report (Bingham, 1992), three exploratory drill holes were excavated beneath the proposed Federal Cell in 1991 by Overland Drilling under the direction of Bingham personnel. Drill hole logs for GW-36 through GW-38 (**Attachment A**) were reviewed to develop a generalized subsurface stratigraphy beneath the proposed Federal Cell (Bingham, 1992). In general, the geologic units include the following from top to bottom:

- Unit 4 Silty Clay silty clays, classifying as CL in accordance with Unified Soil Classification System (USCS), containing some fine silt layers and is generally dry near surface with increasing moisture with depth, and medium stiff to stiff consistency.
- Unit 3 Silty Sand dense to medium dense silty sands and silts containing few thin clay layers.
- Unit 2 Silty Clay interbedded clay and silt layers with a few isolated sand layers up to 2-feet thick, generally stiff, and saturated clays.
- Unit 1 Silty Sand with interbedded clay/silt lens generally dense to very dense sands.

As mentioned previously, existing grades beneath the cell range between 4,268 to 4,270 feet above mean sea level (amsl). The Design Drawings (EnergySolutions, 2020) suggests the average subgrade elevation of the proposed cell is approximately 4,261 feet amsl. This will result in excavations ranging between 7 to 9 feet into native Unit 4. Minimal portions of the Unit 4 will therefore be left in the subgrade. We assume that soft spots of these silty clays will be reworked and compacted prior to construction of the Federal Cell clay liner. Conservatively we have assumed approximately 2 feet of Unit 4 silty clay with medium stiff consistency remains beneath the Federal Cell for the engineering evaluations presented herein. For the purposes of this

				G		•	Itec ^D
				Page	7	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ıy	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL	C1025	Та	sk No.:	01

calculation package, the subsurface geology and Federal Cell is idealized as shown in Figure 2 below.

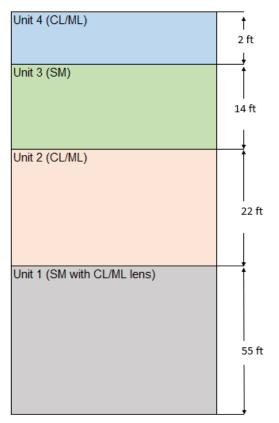


Figure 2 Subsurface Stratigraphy

The subsurface conditions beneath the Federal Cell and CAW embankment are generally consistent, with the exception of Unit 2 extending on average only 45 feet bgs as opposed to the approximated 64 feet bgs for the CAW. Conditions documented from various explorations are in general agreement with the hydrogeologic cross sections across the Clive Facility (Attachment A). The same geologic unit numbers used in the hydrogeologic characterization (Bingham, 1992) are used herein for consistency. The importance of this finding is the subsurface conditions are sufficiently uniform and therefore a single idealized profile is appropriate for the Federal Cell.

				Ge	ntec	
					consi	ultants
				Page	8 of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Baturay	Date:	3/17/21
Client: ES Project: Federal Cell	-	Project/ Propo	osal No.: SL	C1025	Task No.:	01

3.3 Groundwater

The latest static groundwater levels were collected during the referenced Aquifer Study (Stantec, 2020). Depth to water in wells I-1-30, I-1-50, I-1-100, and I-1-700 ranged between 28 to 31 feet. Groundwater depth reported on well logs GW-36 through GW-38 (used for subsurface stratigraphy characterization beneath the Federal Cell) was encountered at approximately 20 feet bgs. Groundwater records for these wells report a depth of approximately 20 feet between 2016 and 2020. A depth of 20 feet was therefore used to represent the existing conditions in our stability and settlement analyses.

Based on available historical records, no significant groundwater elevation rises have occurred at the Facility. However, DWMRC has requested that the proposed Federal Cell be evaluated for potential geotechnical instabilities over the design life caused by future hypothetical groundwater rise events. Therefore, we also evaluated a design groundwater level elevation synonymous with the ground surface elevation as a bounding scenario as requested by DWMRC. The extreme-case groundwater rise condition was used to evaluate liquefaction triggering and long-term stability of the proposed Federal Cell.

3.4 Seismic Hazard Evaluation

DMWRC accepted an updated assessment of the seismic hazard for the Clive Facility consistent with the requirements of the Utah Code of Regulations R313-25-8(5) to justify a 2012 licensing action (AMEC, 2012). The previously accepted seismic hazard analysis for the site was therefore used in this analysis. The seismic hazard assessment was based on deterministic assessment of the 84th percentile peak ground acceleration (PGA) associated with the Maximum Credible Earthquake (MCE) for known active and potentially active faults in the site region and the PGA obtained from a probabilistic seismic hazard analysis (PSHA) considering a 5,000-year return period to assess the seismic hazard for earthquakes that may occur on unknown faults in the area surrounding the site. The largest PGA from the assessment was 0.24g which was same for both deterministic and probabilistic methods. The maximum magnitude (Mw) identified was 7.3. Based on our review of the seismicmap.org tool created by Structural Engineers Association of California (SEAOC) and California's Office of Statewide Health Planning and Development (OSHPD) and a review of Unified Hazard Tool (UHT) by the US Geologic Survey (USGS), the PGA obtained using current fault and ground motion estimation models is 0.22g. Therefore, the seismic parameters previously accepted by DMWRC are considered reasonable estimates of the seismic hazard for the site and were utilized in Geosyntec's seismic hazard analyses documented in this package.

				Page	9	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:		ıy	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL	C1025	Та	sk No.:	01

4. SLOPE STABILITY

The evaluation of global slope stability of the Federal Cell waste embankment was identified as an unresolved requirement in the referenced Technical Report (DWMRC, 2021). Analyses presented herein for global stability consider the geotechnical response of the site for the 10,000year design life (or compliance period). Deep-seated global slope stability analyses were performed for both static and seismic conditions. In addition, the stability analyses include groundwater modeling at current conditions and at the existing ground surface that represents extreme case bounding future scenario in terms of pore pressures for stability. The following sections summarize the methods and analyses performed to demonstrate global static and seismic stability of the proposed Federal Cell. The graphical output files for the analyses are presented in **Attachment B, B2, and B3.**

4.1 <u>Federal Waste Cell Geometry</u>

Based on our review of the Design Drawings for the Federal Cell dated February 2021 (EnergySolutions, 2021), the proposed cell will retain the waste previously described in Section 2 with maximum side slopes of 20 percent (%). For slope stability analyses, the cell geometry has been summarized in Table 1 below.

Description	Dimension and Unit
Length	1,920 feet
Width	1,225 feet
Height	52 ¹ / ₂ feet, maximum at crest
Base Elevation	4,262 to 4,263 feet
Crest Elevation	4,314.5 feet
Shoulder Side Slopes	20%
Shoulder Side Slope Width	175 feet
Shoulder Side Slope Height	32.5 feet

 Table 1: Summary of Federal Cell Design Dimensions

				Page	10	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:		ay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01

Description	Dimension and Unit						
Cover Top Gradient	2.4%						

4.2 <u>Subsurface Material Properties</u>

The material properties of the subsurface soils used to evaluate slope stability reflect our review of available geotechnical lab data, boring logs, and previous parameterization of the adjacent CAW performed and compiled for DWMRC's 2012 Class A West licensing decision (AMEC 2005 & 2011). The subsurface units are generally consistent beneath the CAW and the proposed Federal Cell, therefore, Geosyntec considers previous material property assignment of the units to be generally applicable for the analyses presented herein. Based on review of the geotechnical lab data summarized in 2005 (AMEC, 2005) and the DWMRC's 2012 licensing action, and the boring logs available within the Federal Cell footprint, Geosyntec made more conservative assumptions for the undrained shear strength of clay units. The undrained shear strengths test results reflect the in-situ conditions during the previous explorations. These selections are considered potentially conservative as consolidation of the underlying clay units are expected to occur during construction of the cell, resulting in strength gain overtime with pore pressure dissipation. The material properties for use in slope stability analyses are summarized in Table 2-1 below.

				Undrained	Drained			
Unit	Material Classification	Depth	Total Unit Weight, γ	Undrained Shear Strength, Su	Friction Angle, ø '	Effective Cohesion, c'		
		(ft-bgs)	(pcf)	(psf)	(deg)	(psf)		
4	CL/ML	0 - 9	118	1,000	29	0		
3	SM	9 - 23	120	-	34	0		
2	CL-ML	23 - 45	121	1,500	29	1,000		
1	SM with Interbedded thin lifts of CL-ML	45 - 100	120	-	29	0		

Table 2-1: Summary of Subsurface Material Properties for Slope Stability

				Page	11	of	43	
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ay	Date:	3/17/21	
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL		Та	sk No.:	01	

4.2.1 Subsurface Material Properties – Statistical Analysis

A statistical analysis of the native soil material properties was performed in response to the DWMRC's Request for Information (RFI) dated 19 December 2022 Item D-2. To account for the inherent spatial variability of geotechnical properties, a more focused review of the available exploration data collected across the Clive Facility was performed to develop reasonable sensitivity ranges for each slope stability parameter based on data statistics. The statistical analysis relied on in situ measurements and observations and geotechnical laboratory testing results from samples collected during drilling for the following borings:

- B-1 & B-2 (AMEC, 2005);
- SC-1, -7, -8, -10 & SLC-84 (D&M, 1984);
- GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, -38, -41, -55, DH-33, -48, -51 (Bingham Environmental, 1992); and
- DH-1 (AGRA, 1999).

These boring logs were selected based on proximity to the Federal Cell and the availability of meaningful data (i.e., SPT blow counts, drill rig information, laboratory testing). The logs and laboratory testing summary are provided in **Attachment A.** In the occurrence where robust laboratory testing was limited, the development of material properties for the statistical analysis relied on applicable empirical correlations published in literature.

The DWMRC RFI Item D-2 requests a statistical evaluation of the parameters and estimation of the parameters for mean \pm standard deviations for sensitivity analyses. The objective of a standard statistical evaluation of data in geotechnical evaluations is to consider the potential for underestimating the actual average value of a parameter because of a limited dataset analyzed as part the project and to assess potential for presence of lower average strength zones and perform a sensitivity analysis. The statistical evaluation of data can be done by using mean and standard deviation terms. However, often, the statistical analysis using median and percentile values (or combining median and standard deviation) would yield more realistic values for real physical data with limited number of data points because median is the 50th percentile data corresponding to an actual data point, whereas mean is affected by the presence and number of very large or very small magnitude values in the dataset and may not be realistic. It is common in engineering practice to consider 33^{rd} percentile data point as the lower bound or conservative estimate for the average

				Page	12	of	43	
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ау	Date:	3/17/21	
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01	

value of the parameter. It is also common to consider mean (or median) ± 1 standard deviation which corresponds to 16th and 84th percentile for extreme condition analyses which can be considered applicable to a sensitivity analysis. The use of a range corresponding to ± 2 standard deviations statistically captures 95% of the data within the range, 2.5th and 97.5th percentile. Considering mean minus two standard deviation for estimating the lower bound average value for a sensitivity analysis is not realistic in our opinion. Geosyntec checked the two-standard deviation above/below median for several of the parameters. Due to the large value of the standard deviation, ± 2 standard deviations did not represent meaningful parameter values for the subsequent engineering evaluations and was not relevant to the data set (i.e., the value was negative in value, significantly lower than the minimum value, or not characteristic of the soil type).

The use of ± 1 standard deviation was more characteristic of the typical range of soil property values and our understanding of the subsurface conditions across the site, while still conservative enough to run meaningful sensitivity analyses for the associated geotechnical evaluations (i.e., stability and settlement). Following development of each material property data set, each estimated value was plotted by subsurface elevation and adjacent the median, ± 1 standard deviation, 33rd percentile, and the previously selected parameter value for the subsurface unit (Unit 1 through 4). Results of the statistical analysis for material properties related to slope stability are shown on **Figure 3 through Figure 5.** The minus 1 standard deviation value was selected as the lower bound sensitivity value for slope stability; intended to capture the potential for spatial variability beneath the proposed Federal Cell that could impact its stable condition. One exception was made for undrained shear strength of Unit 4, as the -1 standard deviation value resulted in a negative value due to the large standard deviation value of the data set, thus the minimum value was selected for the sensitivity analysis. The material properties for use in the sensitivity analysis of slope stability are summarized in Table 2-2 below.

			Undrained	Drained			
Unit	Material Classification	Depth	Undrained Shear Strength, Su	Friction Angle, ¢ '	Effective Cohesion, c'		
		(ft-bgs)	(psf)	(deg)	(psf)		
4	CL/ML	0 - 9	500	27	0		
3	SM	9 - 23	-	31	0		
2	CL-ML	23 - 45	750	29	80		

Table 2 - 2: Summary of Lower Bound Sensitivity Strength Properties for Slope Stability

Geosyntec[▷]

consultants

							Page	13 of	43
Written b	oy: M.]	Downing		Date:	3/11/2021	Reviewed by:	B. Batura	·	3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	sal No.: SL	C1025	Task No.:	01

				Drained			
Unit	Material Classification	Depth	Undrained Shear Strength, Su	Friction Angle, ø '	Effective Cohesion, c'		
		(ft-bgs)	(psf)	(deg)	(psf)		
1	SM with Interbedded thin lifts of CL-ML	45 - 100	-	29	0		

The following sections briefly summarizes the development of each material property data set for statistical analysis and subsequent sensitivity parameter selection for slope stability.

4.2.1.1 Friction Angle

Sand-like Soils in Unit 3 & 1

The effective stress friction angle (ϕ ') for the sand-like soils in Unit 3 and 1 was estimated by selecting the minimum correlated value from the following four published empirical correlations with SPT blow counts:

• Hatanaka and Uchida (1996) in the Federal Highway Administration (FHWA, 2002)

$$\phi' = \sqrt{15.4 * (N_1)_{60}} + 20$$

• Schmertmann (1975)

$$\phi' = \tan^{-1} (N_{60} / (12.2 + 20.3 * \frac{\sigma'_V}{2116}))^{0.34}$$

• Peck (1953)

$$\phi' = 0.3 * N + 27$$

• Peck et. al. (1974)

$$\phi' = 27.1 + 0.3 * N_{60} + 0.00054(N_{60}^{2})$$

		Page 14 of 43
Written by: M. Downing	Date: 3/11/2021 Revie	wed B. Baturay Date: 3/17/21 by:
Client: ES Project: Federal Cell	Project/ Proposal No.:	SLC1025 Task No.: 01

The Peck (1953) correlation resulted in the minimum friction angle value for all blow counts representing the Unit 3 and Unit 1 soils. Figure 3 presents the estimated friction angle values plotted by subsurface elevation used to complete the statistical analysis and select lower bound -1 standard deviation sensitivity values.

Clay-like Soils in Unit 4 & 2

The effective stress friction angle for clay-like soils in Unit 4 and 2 was estimated by the following empirical correlation with plasticity index (PI) presented by Sorensen (2013):

$$\phi' = 45 - 14\log(PI)$$

Plasticity index testing results used to develop the friction angle data set for Unit 4 and 2 was based on laboratory testing data provided in **Attachment A. Figure 3** presents the estimated friction angle values plotted by subsurface elevation used to complete the statistical analysis and select lower bound -1 standard deviation sensitivity values.

4.2.1.2 Effective Cohesion

The effective cohesion (or drained cohesion, c') for the clay-like soils in Unit 4 and 2 was estimated by the following empirical correlation with undrained shear strength (Su) presented by Sorensen (2013):

$$c'=0.2\,Su$$

Figure 4 presents the estimated effective cohesion values for Unit 4 and 2 clay-like soils plotted by subsurface elevation used to complete the statistical analysis and select lower bound -1 standard deviation sensitivity values.

4.2.1.3 Undrained Shear Strength

Due to the lack of direct laboratory testing of the undrained shear strength for the clay-like soils in Unit 4 and Unit 2, the undrained shear strength for the clay-like soils relied on three main bases summarized as follows:

				G		•	ltec ⁴	7
				Page	15	of	43	
Written by: M. Downing	Date:	3/11/2021	Reviewed by:		ay	Date:	3/17/21	
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL		Ta	sk No.:	01	

- Limited vane shear testing performed on Unit 2 clay-like soils by AGRA (1999).
- SHANSEP equation used by AMEC (2005):

$$\frac{Su}{\sigma'_{v}} = m \ OCR^{n}$$

Where, the overconsolidation ratio (OCR) was based on limited consolidation data collected by D&M (1984), Bingham Environmental (1992), AGRA (1999), and AMEC (2004) and m & n based on lab testing of Bonneville Clay from various projects in the Salt Lake Valley.

• Correlations with corrected blow counts (N₆₀) presented in the MDT Geotechnical Manual (2008).

Figure 5 presents the resulting estimated undrained shear strength values plotted by subsurface elevation used to complete the statistical analysis and select lower bound -1 standard deviation sensitivity values. One exception was made for undrained shear strength of Unit 4, as the -1 standard deviation value resulted in a negative value due to the large standard deviation value of the data set, thus the minimum value was selected for the sensitivity analysis.

4.3 Federal Cell Cover and Base Liner System Material Properties

The material properties for the cover and base liner system components of the Federal Cell were selected based on review of embankment cell designs, gradations and specifications presented on the design drawings, a review of estimated properties from literature, and our previous experience with similar type materials. The material properties for the liner and cover system components for use in slope stability analyses are presented in Table 3 below.

System Material Component Classification		Thickness	Total Unit Weight, γ	Friction Angle, φ'	Apparent Cohesion, c'	Undrained Shear Strength
		(inches)	(pcf)	(deg)	(psf)	(psf)
Side Rock	Rip Rap	18	135	40	-	-
Top Slope Cover	Silty Clay from Native Unit 4 amended with 15% gravel	12	120	30	200	-

Table 3: Summary of Liner and Cover System Material Properties for Slope Stability

consultants

	Page 16 of	43
Written by: M. Downing	Date: 3/11/2021 Reviewed B. Baturay Date: by:	3/17/21
Client: ES Project: Federal Cell	Project/ Proposal No.: SLC1025 Task No.:	01

System Component	Material Thickness Total Unit Weight, γ		Friction Angle, φ'	Apparent Cohesion, c'	Undrained Shear Strength	
		(inches)	(pcf)	(deg)	(psf)	(psf)
Filter Zone	Mix of Gravel/Sand/Fines (GM-GC)	12	130	34	0	-
Frost Protection	Cobble/Gravel/Soil Mixture (GM-GC)	18	130	38	0	-
Radon	Clay	24	123	0	1,000	-
Evaporative Zone	Silty Clay from Native Unit 4	12	120	29	300	-
Clay Liner	Clay	24	123	28	0	1,0001
Liner Protective Cover	Silty Sand	12	118	38	250	-

Notes:

1. Undrained strength properties assigned to Clay Liner only. All other materials expected to exhibit drained strength under the analyzed loading conditions.

4.4 Federal Cell Waste Material Properties for Stability

The Federal Cell waste fill material properties for stability are based on our understanding of the planned waste placement methods and a review of readily available literature on the shear strength of CLSM. The stability analyses presented herein assume that the proposed Federal Cell will be filled with DU in the form of LLRW cylinders and drums surrounded by flowable fill (CLSM) at a ratio of approximately 1.9 CY of CLSM per CY of DU placed below grade and beneath the embankment top slope. While the compressive strength is typically used to define specifications for CLSM (150 psi specified for the neighboring LARW embankment), a long-term degraded condition over the 10,000-year compliance period is better represented by the residual shear strength resulting from shear zone failures between the waste cylinders and drums and solidified CLSM. Alternative characterizations for the waste were considered, however the residual strength approach is considered to be an appropriate representation. According to a study titled "Flowable Backfill Materials from Bottom Ash for Underground Pipeline," UU triaxial testing of CLSM suggests that residual strength of CLSM may exhibit strength properties of 36 to 46 degrees for effective friction angle and an effective cohesion of 49 to 140 kPa (Lee, K-J, Kim, S-K and Lee, K-H, 2014). Conservatively, the Federal Cell waste for stability was assigned a **friction angle of**

				G		•	Itec ^D
				Page	17	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:		ay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01

30 degrees and **unit weight of 120 pcf** (consistent with unit weight selected for the LARW) with **no effective cohesion.** This characterization is conservative and represent the potential long-term degradation of the CLSM and DU fill over the compliance period.

4.5 Analysis Methodology

Slope stability analyses for Federal Cell was performed using the two-dimensional computer program SLOPE/W version 10.2.0.19483 (GEO-STUDIO International, Ltd. 2019). GEOSTUDIO programs are a widely used for geotechnical and geo-environmental modeling and has been in employed by industry geotechnical engineers since 1977 and used in over 100 countries. SLOPE/W is the leading slope stability software for soil and rock slopes. GEOSTUDIO, maker of SLOPE/W, reports that several US Federal clients using their software include USACE, Federal Energy Regulatory Commission (FERC), United States Department of Agriculture Natural Resources Conservation Service (USDA NRCS), Federal Bureau of Reclamation, and Environmental Protection Agency (EPA). The SLOPE/W program can effectively analyze a variety of slope surface shapes, pore-water pressure conditions, soil properties, and loading conditions. The selected SLOPE/W analyses were based on the Morgenstern-Price method of slices, which satisfies both moment and force equilibrium stability on circular sliding surfaces. The method of slices analysis is consistent with guidelines presented by the US Army Corps of Engineers (USACE) Engineering and Design Slope Stability Engineering Manual No. 1110-2-1902 (USACE, 2003). The results of the slope stability analyses are typically presented in terms of a factor of safety (FS) defined as the ratio of the total stabilizing forces/moments along an assumed sliding plane divided by the total sum of internal and external driving forces/moments acting on the sliding mass. SLOPE/W stability analysis graphical results include the assumed critical sliding surface and corresponding rotation center and resulting sliding mass divided into slices for computational purposes, and material properties.

4.6 Design Criteria

The design criteria for global static and seismic slope stability evaluations presented herein were adopted from the DWMRC's CAW licensing action. The accepted criteria are commonly used for evaluating embankment and dam stability and are consistent with Geosyntec's experience with similar projects. The criteria and associated literature references are summarized in Table 4 below.

consultants

							Page	18	of	43
Written b	oy: M.]	Downing		Date:	3/11/2021	Reviewed by:	B. Batura	•	Date:	3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	osal No.: SL	C1025	Tas	sk No.:	01

Table 4: Geotechnical Design Criteria Summary

Analysis	Criteria	Reference		
Static Stability	FS>1.5	USACE (2003)		
	Seismic coefficient (k_h) = ½ PGA	Hynes-Griffin, Mary E. and Franklin, Arley G. (1984) and USACE (2003).		
Seismic Stability	Pseudostatic, FS > 1.2	Hynes-Griffin, Mary E. and Franklin, Arley G. (1984) ¹		
	Pseudostatic FS = 1, Post- earthquake cover deformations 150 - 300 mm allowable	Makdisi, F.I., and H.B. Seed (1978)		

1. FS of 1.2 was conservatively adapted in previous analyses in 2011 accepted by DWMRC for CAW licensing action based on a review of Hynes-Griffin, Mary E. and Franklin, Arley G. (1984).

4.7 <u>Analyses Scenarios</u>

The following conditions were analyzed to evaluate global static slope stability of the Federal Cell. Upon review of the North-South and East-West geometries and adjacent features of the Federal Cell and existing groundwater levels, two cross-sections were found to be representative of the cell embankment for stability analyses: one section adjacent the proposed ditch and inspection road and one section adjacent an existing waste cell [11(e) or CAW] as shown on the referenced drawings (EnergySolutions, 2020):

- Short-term with existing groundwater, undrained strength of clay-like soils.
- Long-term with existing groundwater, drained strength.
- Long-term with groundwater rise, drained strength.

Each scenario was also analyzed utilizing lower bound sensitivity properties presented in Table 2-2 to account for the impacts of spatial variability and inherent uncertainty in geotechnical engineering properties.

4.8 <u>Short-Term Stability</u>

Short-term loading conditions represent temporary construction conditions where pore water pressures generated by the loads associated with waste embankment construction have not dissipated in the clay-like soils and soil behavior can be characterized as undrained.

				G				
				Page	19	of	43	
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ау	Date:	3/17/21	
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01	

The various modes of failure (i.e., circular failures, block failures, deep-seated, and shallow) commonly seen in embankments of similar design and geology were evaluated to identify the critical case for each scenario analyzed. The most critical failure surface is herein reported for each section and loading condition. The results of short-term stability analyses are presented in terms of FS as presented in **Attachment B** and summarized in Table below. The FS for both sections exceed the design criteria of 1.5 for static conditions. The proposed cell geometry is therefore considered stable under short-term conditions.

Section	Groundwater	Factor of Safety	Critical Failure Mode	Minimum Required Factor of Safety	Figure
Adjacent Road/Ditch	Existing Conditions at 20 feet bgs	2.7	Block Failure Through Undrained Unit 2 Native	1.5	B-1
Adjacent Cell 11(e)	Existing Conditions at 20 feet bgs	2.6	Block Failure Through Undrained Unit 2 Native	1.5	B-2

Table 5-1: Federal Cell Slope Stability Results for Short-Term Conditions

4.8.1 Short-Term Stability Analysis – Sensitivity Analysis

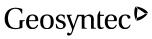
The various modes of failure (i.e., circular failures, block failures, deep-seated, and shallow) commonly seen in embankments of similar design and geology were evaluated to identify the critical case for each scenario analyzed using sensitivity properties summarized in **Table 2 - 2**. The most critical failure surface is herein reported for each section and loading condition. The results of short-term stability analyses using sensitivity properties are presented in terms of FS as presented in **Attachment B2** and summarized in **Table 5-2**. The FS for both sections exceed the design criteria of 1.5 for static conditions. The proposed cell geometry is therefore considered stable under short-term conditions even with lower bound sensitivity strengths.

consultants

							Page	20 of	43
Written b	oy: M.]	Downing		Date:	3/11/2021	Reviewed by:	B. Batura	•	: 3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	sal No.: SL	C1025	Task No.	: 01

 Table 5-2: Federal Cell Slope Stability Results for Short-Term Conditions with Lower Bound Sensitivity Properties

Section	Groundwater	Factor of Safety	Critical Failure Mode	Minimum Required Factor of Safety	Figure
Adjacent Road/Ditch	Existing Conditions at 20 feet bgs	1.8	Block Failure Through Undrained Unit 2 Native	1.5	B2-1
Adjacent Cell 11(e)	Existing Conditions at 20 feet bgs	1.7	Block Failure Through Undrained Unit 2 Native	1.5	B2-2


4.8.2 Short-Term Stability Analysis – Interim Grading

Based on input provided by EnergySolutions regarding their waste placement and cell configuration for the proposed Federal Cell, the critical geometry for interim stability was identified as the excavation into native soils prior to waste placement. The base of the cell is expected to sit approximately 7 feet below current grade with native side slopes excavated at 2H:1V serving as the subgrade for the overlying liner system. The critical scenario for this interim grading condition is short-term loading scenario (undrained strength of clay-like soils) with existing groundwater conditions (20 feet bgs). The result of the interim stability analysis is presented in terms of FS presented in **Attachment B3**. The FS exceeds the recommended value of 1.5. Therefore, the proposed excavation is considered stable.

4.9 Long-Term Stability Analysis

Long-term slope stability was evaluated considering the two design groundwater levels, existing conditions (20 feet bgs) and the extreme-case groundwater rise conditions (base elevation), and drained soil material properties. The drained shear strength of the foundation soils, liner, and cover materials were selected for a Mohr-Coulomb SLOPE/W material model. Materials are expected to exhibit drained strength properties in the long-term condition where pore pressures have dissipated over time, following construction completion of the cell.

The various modes of failure (i.e., circular failures, block failures, deep-seated, and shallow) commonly seen in embankments of similar design and geology were evaluated to identify the critical case for each scenario analyzed. The most critical failure surface is herein reported for each section and loading condition. The results of the long-term stability analysis are presented in terms

consultants

	Page 21 of	43
Written by: M. Downing	Date: 3/11/2021 Reviewed B. Baturay Date:	3/17/21
Client: ES Project: Federal Cell	Project/ Proposal No.: SLC1025 Task No.:	01

of FS summarized in Table below and presented in Attachment B. The FS for all scenarios analyzed exceed the recommended value. Therefore, the proposed Federal Cell design is considered stable under long-term conditions.

Section	Groundwater	water Factor of Critical Failure Safety Mode		Minimum Required Factor of Safety	Figure
Adjacent	Groundwater Level at Existing 20 feet bgs	3.4	Block Failure Through Clay Liner	1.5	B-3
Adjacent Road/Ditch	Groundwater Level during Future Rise Event (modeled at base elevation)	3.4	Block Failure Through Unit 4 Native	1.5	B-4
Adjacent Cell	Groundwater Level at Existing 20 feet bgs	3.3	Block Failure Through Clay Liner	1.5	B-5
11(e)	Groundwater Level during Future Rise Event (modeled at base elevation)	3.3	Block Failure Through Unit 4 Native	1.5	B-6

Table 6-1: Federal Cell Slope Stability Results for Long -Term Conditions

4.9.1 Long-Term Stability Analysis – Sensitivity Analysis

The various modes of failure (i.e., circular failures, block failures, deep-seated, and shallow) commonly seen in embankments of similar design and geology were evaluated to identify the critical case for each scenario analyzed using sensitivity properties of native soils summarized in **Table 2 - 2**.

The most critical failure surface is herein reported for each section and loading condition. The results of long-term stability analyses using sensitivity properties of the native soils are presented in terms of FS as presented in **Attachment B2** and summarized in **Table 6-2**. The FS for both sections exceed the design criteria of 1.5 for static conditions. The proposed cell geometry is therefore considered stable under long-term conditions even with lower bound sensitivity strengths.

consultants

							Page	22	of	43
Written b	oy: M.	Downing		Date:	3/11/2021	Reviewed by:	B. Batura	•		3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	osal No.: SL	C1025	Tas	k No.:	01

 Table 6-2: Federal Cell Slope Stability Results for Long -Term Conditions with Lower Bound Sensitivity Properties

Section	Groundwater	Factor of Safety	Critical Failure Mode	Minimum Required Factor of Safety	Figure
Adjacent Road/Ditch	Groundwater Level during Future Rise Event (modeled at base elevation)	3.3	Block Failure Through Unit 4 Native	1.5	B2-3
Adjacent Cell 11(e)	Groundwater Level during Future Rise Event (modeled at base elevation)	3.1	Block Failure Through Unit 4 Native	1.5	B2-4

4.10 <u>Pseudostatic Stability</u>

Pseudostatic slope stability procedures are commonly used to evaluate the likely seismic performance of embankment and dam slopes. The pseudostatic analysis presented in this section is based on the previously accepted analyses by DWMRC and guidelines presented in the Hynes-Griffin and Franklin method (Hynes-Griffin, Mary E. and Franklin, Arley G, 1984). In pseudostatic analyses, the effects of an earthquake are evaluated by applying a static horizontal inertial force to the potential sliding mass. This horizontal inertial force is expressed as the product of the seismic coefficient (k) and the weight of the potential sliding mass. If resulting forces including the inertial forces are greater than the resisting forces, then seismic deformations will take place. In accordance with the design criteria adopted from adjacent cell designs based on Hynes-Griffin and Franklin method (Hynes-Griffin, Mary E. and Franklin, Arley G, 1984), a seismic coefficient equal to 50% of the PGA was used for the pseudostatic analysis and a FS of 1.2 was adapted as a limiting factor of safety for large deformations. The analysis also used groundwater conditions that represent the extreme-case groundwater rise event and undrained material properties for the clay liner and foundational units.

Various modes of failure are evaluated to identify the critical case for each scenario analyzed. The most critical failure surface has been reported herein for each section and loading condition. The results of the pseudostatic stability analysis are presented in terms of FS summarized in Table below and presented in Attachment B. The FS for the scenarios analyzed meet the design criteria. Therefore, the proposed Federal Cell design is not expected to experience large deformations during seismic loading. Simplified seismic deformation analyses for the range of anticipated deformations are presented in Section 4.13.

Geosyntec <a>>

consultants

							Page	23 of	f 43
Written b	oy: M. I	Downing		Date:	3/11/2021	Reviewed by:	B. Batura	·	e: 3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	osal No.: SL	C1025	Task No	.: 01

Table 7: Federal Cell Slope Stability Results for Pseudostatic

Section	Loading Condition	Factor of Safety	Critical Failure Mode	Minimum Required Factor of Safety	Figure
Adjacent Road/Ditch	k = 0.12 g Groundwater Level during Future Rise Event (modeled at base elevation)	1.3	Block failure through Unit 4 Native	1.2	B-7
Adjacent Cell 11(e)	k = 0.12 g Groundwater Level during Future Rise Event (modeled at base elevation)	1.3	Block failure through Unit 4 Native	1.2	B-8

4.11 Post-Earthquake Stability

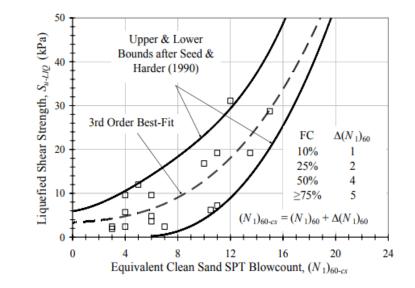
To demonstrate the potential effects of cyclic softening in native soils discussed further in Section 6, the proposed Federal Cell was analyzed in SLOPE/W with the potential strength degradation of the clay-like soils following an earthquake event. To model this in SLOPE/W, the foundational clay-like soils (Units 2 and 4) and clay liner were modeled with reduced undrained strength properties. An undrained shear strength degradation of 50% was used to model this phenomenon. This strength reduction is a lower bound estimate to the strength reduction, if any cyclic softening were to happen. Justification for this conservative assumption is provided in Section 6. A minimum FS for stable static conditions of 1.5 was considered acceptable per design criteria and criteria found in published literature summarized in Section 4.6 above.

Various modes of failure (i.e. failures through deeper clay Unit 2, clay liner, and shallower clay Unit 4) are evaluated to identify the critical case for each section analyzed. The most critical failure surface has been reported here for each section and loading condition. The results of the post-earthquake stability analysis are presented in terms of FS summarized in the Table below and presented in Attachment B. **The minimum FS of 1.5 was achieved for the sections analyzed** and is therefore considered stable in a post-earthquake scenario where clay-like soils have undergone significant shear strength degradation. A discussion on cyclic softening of clay-like soils is provided in Section 6 of this package.

Geosyntec <a>>

consultants

	Page 24 of 43
Written by: M. Downing	Date: 3/11/2021 Reviewed B. Baturay Date: 3/17/21 by:
Client: ES Project: Federal Cell	Project/ Proposal No.: SLC1025 Task No.: 01


Table 8-1: Federal Cell Slope Stability Results for Post-Earthquake Cyclic Softening

Section	Loading Condition	Factor of Safety	Critical Failure Mode	Minimum Required Factor of Safety	Figure
Adjacent Road/Ditch	Groundwater Level during Future Rise Event (modeled at base elevation)	1.8	Block Failure Through Unit 4 Native	1.5	B-9
Adjacent Cell 11(e)	Groundwater Level during Future Rise Event (modeled at base elevation)	1.6	Block Failure Through Unit 4 Native	1.5	B-10

4.12 Post-Earthquake Stability – Unit 3 Liquefied Residual Strength

To demonstrate the potential effects of liquefaction of the sand-like soils in Unit 3 discussed further in Section 6, the proposed Federal Cell was analyzed in SLOPE/W with the potential residual strength of the soils following an earthquake event in the event that groundwater rises in the future. To model this in SLOPE/W, the foundational sand-like soils in Unit 3 were modeled with residual strength properties. As discussed further in Section 6, there is a potential for liquefaction of localized medium dense silty sand pockets in Unit 3, assuming a groundwater rise condition. Results of the liquefaction triggering analysis discussed in Section 6 were used to inform the selection residual strength for Unit 3 by estimating a liquefied undrained shear strength through correlation with the minimum $(N_1)_{60-CS}$ from the liquefaction analysis results (**Attachment E2**) and use of an empirical relationship presented by Seed and Harder (1990) shown in the figure below. The resulting minimum $(N_1)_{60-CS}$ for Unit 3 sand-like soils has a value of 20, correlating to a liquefied shear strength of at least 50 kPa (or ~1000 psf).

				G		-	Itec ^v Iltants
				Page	25	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:		ay	Date:	3/17/21
Client: ES Project: Federal Cell	-	Project/ Propo	osal No.: SL	C1025	Ta	sk No.:	01

Various modes of failure (i.e. failures through deeper clay Unit 2 and shallower Unit 4 and 3) were evaluated to identify the critical case for each section analyzed. The most critical failure surface has been reported here for each section and loading condition. The results of the post-earthquake stability analysis with liquefied residual strengths are presented in terms of FS summarized in the Table below and presented in Attachment B3. **The minimum FS of 1.5 was achieved for the sections analyzed** and is therefore considered stable in a post-earthquake scenario where sand-like soils have liquefied, and clay-like soils have undergone significant shear strength degradation. A discussion on liquefaction of the sand-like soils is provided in Section 6 of this package.

 Table 8-2: Federal Cell Slope Stability Results for Post-Earthquake Liquefaction and Cyclic Softening

Section	Loading Condition	Factor of Safety	Critical Failure Mode	Minimum Required Factor of Safety	Figure
Adjacent Road/Ditch	Groundwater Level during Future Rise Event (modeled at base elevation)	2.0	Block Failure Through Unit 3 Native	1.5	B-11
Adjacent Cell 11(e)	Groundwater Level during Future Rise Event (modeled at base elevation)	1.9	Block Failure Through Unit 3 Native	1.5	B-12

Geosyntec [▷]
concultante

					consu			
				Page	26	of	43	
Written by: M. Downing	Date:	3/11/2021	Reviewed by:		ay	Date:	3/17/21	
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL	C1025	Та	sk No.:	01	

4.13 Seismic Deformation

The seismic deformation analysis for the Federal Cell was performed using the Makdisi and Seed (1978) simplified method for estimating seismically induced deformations for earthen embankments and geosynthetics. The site-specific seismic design parameters such as PGA and Mw required for estimating seismically induced slope deformations were based on the referenced seismic hazard analysis that justified DWMRC's 2012 license action and as discussed in Section 3.4, are as follows:

• PGA = 0.24g

• Mw = 7.3

The seismic deformation analysis includes performing a pseudostatic stability analysis and determining the yield coefficient, k_y , resulting in an FS equal to 1. The k_y is next compared with the maximum estimated inertial force, k_{max} , to empirically estimate the anticipated embankment deformations based on the earthquake magnitude. In accordance with the current state of practice and previous analyses for the adjacent cells, seismically induced deformations of 150 to 300 mm are considered acceptable. The seismic deformation analysis results are summarized in Table 9 and presented in Attachment C.

Case/Description	ky	ü _{max}	y (ft)	H (ft)	y/H	k _{max} /ü _{max}	k _{max}	k _y /k _{max}	Estimated Deformation (mm)
Critical Section Failure Through Unit 4 Native, Entire Slope Face (y/H=1), Adjacent Cell 11(e)	0.18	0.58	52	52	1	0.34	0.2	0.91	4

Table 9: Federal Cell Seismic Deformation Results

Notes:

1. y is depth of sliding mass under evaluations

2. H is average height of the potential sliding mass

Results of the permanent deformation analyses (using undrained strengths and groundwater rise elevation), estimate seismically induced deformations to be negligible. Therefore, the performance of the Federal Cell under the provided earthquake ground motions, is considered to be acceptable in terms of seismically induced deformations.

				G		•	Itec ^D
				Page	27	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ıy	Date:	3/17/21
Client: ES Project: Federal Cell]	Project/ Propo	osal No.: SLO	C1025	Tas	sk No.:	01

5. SETTLEMENT ANALYSIS

The DWMRC raised concerns for the uncertainty in the parameters used for geotechnical analysis of the proposed Federal Cell foundation settlement and subsequent embankment response in the referenced Technical Report (DWMRC, 2021). The following sections describe the method of analysis and results of estimated elastic, primary consolidation, and secondary compression settlement of the Federal Cell foundational soils and the consequences of these estimates. Settlement calculations presented herein are considered conservative as the condition modeled assumes a "wished into place" scenario. In reality, construction of the proposed cell is likely to be slow enough (on the order of ±10 years) to allow for dissipation of pore pressures in the underlying fine-grained soils, resulting in near completion of primary consolidation settlement by the end of waste placement and start of cover construction. Conservatively we assumed primary consolidation settlements would go on another year following final placement of waste. This is considered conservative due to the presence of consistent interbedded sandy layers observed in the subsurface. Sandy soils act as drainage layers that allow for pore pressures to dissipate and expedite consolidation of the fine-grained soils. Over the course of construction, these fine-grained soils are expected to experience this consolidation and be nearly complete by end of waste placement. This phenomenon has been modeled and predicted for the other adjacent cells (AMEC, 2005). Based on the analysis, Geosyntec's opinion is that predicted settlement of the cell would not have an adverse impact on the stable slope conditions as magnitude of settlement is expected be limited and would cause only limited flattening of the top slopes. The flattening slopes and potential differential settlements could reduce the drainage slopes over the cover locally and affect infiltration. This is something that should be considered during design and construction.

5.1 Previous Analyses

While other adjacent cells varied in geometry and waste fill types, findings of previous settlement analyses and models for other cells were reviewed for comparison and consistency. The load and geometry may vary, but the subsurface conditions beneath the adjacent cells are generally consistent with that of the Federal Cell. Settlements of the foundational soils due to embankment loading are projected to be on the order of 12 to 16-inches with secondary settlements calculated over 500-year compliance period on the order of 8-inches. The analysis justifying DWMRC's license action for the CAW predicted and modeled these settlements for an embankment height of approximately 100 feet for various waste types including compressible debris, incompressible debris, and CLSM. The proposed waste and cover materials for the Federal Cell may have a greater average unit weight than the CAW (120 pcf versus 100 pcf), but the proposed embankment is

									conse	intuinto
							Page	28	of	43
Written b	y: M.]	Downing		Date:	3/11/2021	Reviewed by:	B. Batura	•		3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo	osal No.: SL			sk No.:	01

almost half the height of the CAW. Therefore, Geosyntec predicts that the expected foundation settlement for the Federal Cell will likely be less than the CAW models.

5.2 Compressibility Properties of Foundation Soils

The compressibility properties of the subsurface soils used to evaluate the foundation settlement were estimated from laboratory testing results for the fine-grained soils and derived from typical values for the coarse-grained soils at specified in-situ confining pressures. Correlations from published literature were also used to supplement the laboratory data.

2005 interpretation of various explorations across the Clive Facility (Bingham 1992, AGRA 1999, and AMEC 2004) has been provided in Attachment A. In these previous studies, consolidation tests were performed on fine-grained soil units (Units 2 and 4) that have been consistently encountered in the subsurface across the Clive Facility. Geosyntec used the interpreted results provided to evaluate consolidation properties (Cc, Cr, OCR) of these soils that also underlie the proposed Federal Cell.

Initial void ratios (e_0) from the consolidation tests were not provided in the aforementioned lab summary data table (Attachment A), therefore Geosyntec used in-situ water content (w) laboratory test results for the underlying soils to estimate the initial void ratio of the fine-grained soils through the use of published empirical correlations. The e_0 of the materials was estimated using the following relationship between water content and the specific gravity for saturated soils:

$$e_o = Gs \ (w/100)$$

Where Gs is the specific gravity of the soils; assumed to equal 2.65.

The modified secondary compression index ($C\alpha\epsilon$) is typically calculated through interpretation of the consolidation test results and defined as the slope of the compressive strain plotted against logarithm of time observed post primary consolidation during the test. A correlation was used that relates $C\alpha\epsilon$ to the estimated in-situ moisture content. $C\alpha\epsilon$ of the materials was estimated using the following relationship between water content:

$$C\alpha\varepsilon = 0.0001w$$

Elastic settlement of the coarse-grained materials (Units 1 and 3) are typically estimated through use of the constrained modulus (M_s) of the soil. The sandy subsurface materials in Unit 3 are assumed to have an elastic modulus of approximately 1,800 psi and a Poisson's ratio of 0.25. The

consultants

				Page	29	of	43
Written by: M. Downing		3/11/2021	Reviewed by:	B. Batura	·	Date:	3/17/21
Client: ES Project: Federal Ce	11	Project/ Prope	osal No.: SL	C1025	Ta	sk No.:	01

subsurface materials in the Lower Sand Unit 1 are assumed to have an elastic modulus of approximately 2,300 psi and a Poisson's ratio of 0.38. The elastic modulus and Poisson's ratios were selected based properties of similar soils types are equivalent confining pressures (Qian et al. 2002). The M_s was calculated with equation presented above.

$$M_{s} = \frac{E_{s} \times (1 - v_{s})}{(1 + v_{s})(1 - 2 \times v_{s})}$$

where:

 v_s = Poisson's ratio of soil, ft; and

 $E_s = elastic modulus of soil, lb/ft^2$.

The unit weights of geologic units are consistent with the assignments used in the slope stability analyses discussed earlier.

A summary of the resulting settlement material properties used in our settlement analysis is provided in Table 10.

Unit	Thick ness	Unit Weight Y	Constrained Modulus Ms	Primary Compression Index	Compression Index		OCR	Water content (%)	Initial Void Ratio	
	(ft)	(pcf)	(psf)	Cc		Index Cαε	(psf)		eo	
4	2	118	-	0.25	0.02	0.004	5	40	1.06	
3	14	120	311,040	-	-	-	-	-	-	
2	22	121	-	0.20	0.025	0.0045	1.5	45	1.2	
1	55	120	531,560	-	-	-	-	-	-	

Table 10: Summary of Properties for Foundation Settlement Analysis

5.3 Federal Cell Loading and Geometry

For this calculation package, the settlement evaluation is based on the geometry presented in Table 1. For simplification the load was calculated as the maximum height (52.5 feet) of fill with an average unit weight of 120 pcf. The loading shape was approximated with a rectangular loading

				Page	30	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ау	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Ta	sk No.:	01

shape for the purposes of settlement analysis. This is considered representative of the average unit weight of CLSM, the waste, and the various cover and liner materials. This results in a load over the foundational soils of **approximately 6,300 psf applied at the base of the Federal Cell.**

A stress distribution model was developed to assess elastic and consolidation settlement. The change in stress ($\Delta\sigma$) is due to the Federal Cell height above the ground surface approximated to be 6,300 psf. The change in stress in the underlying soils is calculated as the difference between the existing overburden stress and the overburden pressure due to the Federal Cell. The distribution of the total stress with depth assumes that the Federal Cell is an infinite embankment. The increase in stress at depth ($\Delta\sigma_{(z)}$) is equal to the change in stress at the surface ($\Delta\sigma$) distributed over an effective base area that increases with each depth interval below the surface, this is determined with the following equations:

 $\Delta \sigma_{(z)} = (\Delta \sigma * Area_{base}) / Area_{effective}$

Area_{effective} = (B + z)*(L+z) and

B = Base width of the cell (ft)

L = Base length of the cell (ft)

z = interval depth below ground surface (ft)

The change in stress within the geologic units was evaluated for each 1-foot interval bgs. The stress distribution calculations are presented in the settlement analysis calculations presented in **Attachment D**.

The magnitude of loading estimated here are the average loading beneath the top deck portion of the embankment where the maximum embankment height is experienced and expected to decrease linearly over the top slopes to essentially to no loading at the toe of the embankment.

5.4 Elastic Settlement (Immediate) of the Sand-Like Units (1 and 3)

Because of the coarse-grained nature of sand-like units (Units 1 and 3), the settlement of these layers is anticipated to be primarily the result of elastic or immediate settlement. To evaluate the potential effects of elastic settlement of the sand units, the units are assumed to behave as an elastic and homogeneous medium. The foundation settlement is calculated using the Elastic Settlement Equation, which is:

consultants

				Page	31 of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	•	3/17/21
Client: ES Project: Federal Ce	11	Project/ Propo	osal No.: SL	C1025	Task No.:	01

where:

 $Z_e = \frac{\Delta\sigma}{M_s} \times H_o$

 Z_e = elastic settlement of soil layer, ft;

 $H_o =$ initial thickness of soil layer, ft;

 $\Delta \sigma$ = change in stress, psf (discussed in Section 5.3); and

 M_s = constrained modulus of soil, lb/ft² (provided in Table 9, discussed in Section 5.3).

The change in stress at each 1-foot interval in Units 1 and 3 and the corresponding constrained modulus were then used to calculate the elastic settlement with the equation presented above for each layer interval. The results of each interval where then summated to a cumulative estimate for elastic settlement of Units 1 and 3. The elastic settlement for each unit is summarized in the Table below and presented in **Attachment D**. The elastic settlements are expected to occur during construction of the Federal Cell and be complete prior to cover construction. The elastic settlement reported herein is therefore not expected to adversely impact the long-term stability of the cover and will likely not need to be considered or accounted for during cover construction.

Unit	Material Description	Estimated Elastic Settlement (inches)
3	Upper Silty Sand	3
1	Deeper Silty Sand with CL/ML lens	8

Table 11: Foundation Soil Elastic Settlement

5.5 Primary Consolidation

Because of the fine-grained nature of Units 2 & 4, the settlement of these layers is anticipated to be a result of consolidation. The subsurface stratigraphy is discussed in Section 3.2 above with the material properties summarized in Table 10. To calculate the consolidation settlement (S_c), Units 2 and 4 were broken into 1-foot-thick intervals. The total consolidation settlement within each unit was the summation of the consolidation settlement in the individual 1-foot-thick layers. Based on the consolidation lab data discussed in Section 5.2, the soils are likely overconsolidated.

consultants

			Page	32 of	43
Written by: M. Downing	Date: 3/		wed B. Batur by:	·	3/17/21
Client: ES Project: Federal Co	ell Pro	ject/ Proposal No.:		Task No.:	01

The overconsolidation ratio (OCR) for Units 2 and 4 are presented in Table 10. The equation for consolidation settlement for overconsolidated soil is as follows:

$$S_{c} = \frac{C_{r}}{(1+e_{o})} \times H \times \log\left[\frac{\left(\sigma'_{p}\right)}{\sigma'_{o}}\right] + \frac{C_{c}}{(1+e_{o})} \times H \times \log\left[\frac{\left(\sigma'_{vo} + \Delta\sigma\right)}{\sigma'_{p}}\right]$$

where,

$e_o = See Table 10$	initial void ratio
H = 1	thickness of the compressible layer interval (ft)
$C_c = See Table 10$	compression index
Cr = See Table 10	recompression index
OCR = See Table 10	overconsolidation ratio
$\sigma'_p = OCR * \sigma'_{vo}$	maximum past pressure (psf)
$\sigma'_{vo} = varies$	initial vertical effective stress (psf). Groundwater was assumed at a depth of 25 feet below the ground surface (existing level)
$\Delta \sigma = $ varies	change in stress due to overburden loading (psf) (See Section 5.3 for discussion and Attachment C for stress distribution calculations)

Calculation of primary consolidation settlement of Units 2 and 4 is provided in **Attachment D** and summarized in Table 12 below.

5.6 Secondary Compression

Secondary compression is typically observed after primary settlement is substantially complete. For the purpose of calculations, this is often assumed as the time at which the material reaches 95% degree of consolidation. As discussed earlier, because the waste embankment placement takes place relatively slowly, the primary consolidation is expected to be substantially complete as the filling is complete and by the time cover materials are placed. With this assumption and using the secondary compression parameter presented in Table 10, **secondary compression during the compliance period of 10,000 years was estimated through the following relationship**:

consultants

							Page	33	of	43
Written b	ру: М.	Downing		Date:	3/11/2021	Reviewed by:	B. Batur	•		3/17/21
Client:	ES	Project:	Federal Cell		Project/ Propo				sk No.:	01

$$Ss = C\alpha\varepsilon * H_{100}(\frac{t_2}{t_1})$$

Where

Ss	time dependent secondary settlement occurring between t_1 and t_2
$C\alpha\epsilon = See Table 9$	modified secondary compression index
$H_{100} = varies$	total thickness of compressible layers at the end of primary consolidation (for each 1-foot interval in Units 2 and 4)
$t_1 = 1$ -year	time between the placement of last significant waste in the cell and
	cover construction (assumed to be 1 year based on review of previous analyses and conservative assumptions regarding the pace of construction)
$t_2 = 10,000$ years	time for which secondary settlements are estimated for (compliance period of 10,000 years)

Summation of the secondary compression of each 1-foot interval of Units 2 and 4 was performed to estimate the cumulative secondary compression of each unit. The calculations for secondary compression are presented in **Attachment D** and summarized in Table 12 below.

Unit	Material Description	Estimated Primary Consolidation Settlement (inches)	Estimated Secondary Compression Settlement (inches)
4	Upper CL-ML	3	<1
2	Deeper CL-ML	9	5

Table 12: Foundation Soil Consolidation and Secondary Compression Settlement

5.7 Consequences of Settlement

Based on our understanding of the subsurface stratigraphy beneath the proposed Federal Cell and review of other adjacent cell studies (AMEC, 2005 & 2011), there are two principal geologic units (Units 2 and 4) which may be subject to long-term settlements. These long-term settlements estimated in this calculation package are principally a result of consolidation settlements of finegrained soils. The upper sand unit (Unit 3) and lowermost sequence of sands with thin lifts of clays and silts (Unit 1) are not anticipated to impact long-term settlements. The elastic

				G	Itec ^D		
				Page	34	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01

settlements of those layers were reported in this package to provide a complete picture of the total estimated settlement in the foundational soils of the proposed Federal Cell. It is the primary consolidation and secondary compression settlements, however, that should be considered during design and construction of the cell cover. Based on the results presented in Table 12, 12 inches of primary consolidation settlement and 6 inches of secondary compression settlement may result from construction of the Federal Cell. Considering the loading rate, the primary consolidation settlement will likely occur simultaneously during waste placement and will be substantially complete by the time the waste reaches its final elevation. We assumed 1 year after completion of waste placement for completion of primary consolidation, as a conservative estimate discussed previously. Secondary compression settlements which are relatively small in magnitude, however, should be considered in cover design to ensure proper drainage is achieved because these settlements will occur after the cover construction. The analyses assumed a secondary compression time period of 10,000 years per compliance period requirements. A conservative assumption of zero secondary compression at the edge of the cell and the maximum magnitude of 6 inches at the center would result in an average settlement gradient of 6 inches over approximately 600 feet as 0.1 %. Therefore, the current design gradient of 2.4% maybe reduced to 2.3% in an average sense which is considered negligible.

The magnitude of settlements estimated here are for the top deck portion of the embankment where the maximum embankment height is experienced and expected to decrease linearly over the top slopes to essentially no settlement at the toe of the embankment. Therefore, settlement of the foundational soils as a result of construction of the Federal Cell are not expected to adversely impact the adjacent cells.

Settlement plate instrumentation may be used during cell construction to monitor consolidation settlements, project substantial completion of consolidation settlements, and confirm design assumptions prior to construction of the cover. These results may be useful for future waste cell designs and construction. Overbuilding the cover and performing inspections and routine maintenance over the monitoring period may help to mitigate the effects of long-term settlement.

5.8 Consequences of Spatial Variability for Settlement

In response to DWMRC's RFI dated 19 December 2022 Item D-2 requesting sensitivity analyses for the geotechnical engineering evaluations to account for spatial variability and inherent uncertainty of the subsurface conditions, a statistical analysis was performed on the available laboratory testing data available from the following explorations:

consulta	ants
----------	------

		Page	35 of 43
Written by: M. Downing	Date: 3/11/2021	Reviewed B. Batura by:	y Date: 3/17/21
Client: ES Project: Federal	Cell Project/ Prop	osal No.: SLC1025	Task No.: 01

- B-1 & B-2 (AMEC, 2005);
- SC-1, -7, -8, -10 & SLC-84 (D&M, 1984);
- GW-16, -17, -18, -19A, -19B, (Bingham Environmental, 1992); and
- DH-1 (AGRA, 1999).

The statistical analysis was focused on the compressibility parameters of the clay-like soils, since the nature of how these soils may consolidate over a long time period compared to immediate settlement of sand-like soils impact the design and construction of the Federal Cell. As mentioned previously in Section 5.4, Unit 3 and 1 sand-like soils are expected to undergo elastic settlements that will likely occur during construction of the Federal Cell and be complete prior to cover construction. Therefore, these elastic settlements are not expected to adversely impact the long-term stability of the cover and thus a sensitivity analysis of the compressibility parameters for Unit 3 and 1 soils was not performed.

The laboratory testing summary table is provided in **Attachment A.** Following assembly of the compressibility data set for Unit 4 and Unit 2, each value (i.e., Cc, Cr, eo) was plotted by subsurface elevation and adjacent the median, ± 1 standard deviation, 33^{rd} or 66^{th} percentile, and the previously selected parameter value for the subsurface unit (Unit 4 and Unit 2). Results of the statistical analysis for compressibility properties related to consolidation settlement are shown on **Figure 7 through Figure 10**.

The driving factor for considering impacts of long-term settlement on a stable condition for the proposed Federal Cell is the potential for final cover slope reversal that could adversely impact the drainage design and lead to unwanted ponding. Thus, the key consideration for spatial variability under the proposed cell is the potential for differential settlement. To quantitatively assess the potential for differential settlement, the statistical analysis results (**Figures 7 - 10**) for were used to evaluate primary and secondary compression of Unit 4 and 2 soil layers by using +1 (maximum settlement) and -1 (minimum settlement) standard deviation compressibility values. The result of this calculation is provided in **Attachment D2** and summarized in the Table below.

consultants

				Page	36 of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	•	3/17/21
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SLO	C1025	Task No.:	01

Table 13: Minimum and Maximum	Estimated Settlement
-------------------------------	----------------------

Unit	Material Description	Estimated Minimum Primary Consolidation Settlement (inches)	Estimated Minimum Secondary Compression Settlement (inches)	Estimated Maximum Primary Consolidation Settlement (inches)	Estimated Maximum Secondary Compression Settlement (inches)
4	Upper CL-ML	1	<1	6	<1
2	Deeper CL-ML	3	1	22	5

As mentioned previously, secondary compression settlements should be considered in cover design to ensure proper drainage is achieved, because these settlements will occur after the cover construction. Results in Section 5.7 indicated a maximum differential settlement of 6 inches may occur in response to secondary compression. Results of the sensitivity analysis, using minimum and maximum secondary compression estimates in Table 13 above, indicate similar results (~6 inches of differential settlement), thus conclusions in Section 5.7 are unchanged.

6. LIQUEFACTION

Based on our understanding of the Technical Report (DWMRC, 2021), we understand the 10,000year compliance period for the proposed Federal Cell presents a need for conservative approaches to analyzing the geotechnical stability mechanisms. The following sections summarize the liquefaction analyses performed for the proposed Federal Cell that support this need. The analyses presented are based on an extreme groundwater level rise resulting in a groundwater elevation equal to the current existing ground surface (a 25 feet groundwater rise event).

6.1 **Previous Analyses**

A groundwater level of 26 feet bgs was used in previous liquefaction analyses for the Clive Facility (AMEC 2005, 2011, and 2012). Therefore, the upper sand Unit 3 was not considered during their liquefaction triggering analysis. Previous calculations indicated that liquefaction of the saturated soil layers below the site (Units 1 and 2 at the time) was not a design issue for the adjacent waste cells. For the seismic design event analyzed, majority of the soils in the upper 30 to 60 feet of the subsurface, Unit 2, consist of cohesive deposits, which have a low probability of liquefaction due to their high clay content. It was also found that the interbedded cohesionless silt and silty sand deposits in Unit 1 would be also unlikely to liquefy due to their relatively high density. **Geosyntec**

				Page	37	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01

generally agrees with this prediction for Unit 1 and considers it applicable to the Federal Cell Unit 1 soils, however consideration for the upper sand Unit 3 was included in the current analysis to reflect the groundwater level rise condition that would saturate the cohesionless soils.

6.2 Seismic Design Parameters

The site-specific seismic design parameters such as PGA and Mw required for estimating liquefaction triggering were based on the referenced seismic hazard analysis that justified DWMRC's 2012 license action and as discussed in Section 3.4, and are as follows:

- PGA = 0.24g
- Mw = 7.3

6.3 Liquefaction of Sand-Like Soils

The liquefaction triggering analysis was performed following the procedures outlined in Idriss and Boulanger (2008) for the sand-like soils in Unit 3. Sand-like soils are referred to soils which primarily consist of coarse-grained particles more than 50 percent by weight or very low plasticity fine-grained soils (i.e., low plasticity silts). The soils classified as clay were not considered susceptible to liquefaction and their evaluation is discussed in following section.

Boring logs for GW-36 through GW-38 (Bingham, 1992) which were excavated with a hollowstem auger (HSA) and extended to depths of 30 feet bgs into proposed Federal Cell area limits were used to complete the analysis (logs are provided in **Attachment A**). Due to the limitations of HSA drilling methods in keeping the drilled hole stable for drilling at or below groundwater level, SPT blow counts recorded at or below groundwater do not provide a meaningful representation of the subsurface soil density. Therefore, the liquefaction triggering analysis herein only presents results for soils with SPT blow-counts above the groundwater readings; approximately 18 to 20 feet bgs. Fines content results were not available for Unit 3 samples collected from GW-36 through GW-38. The fines content was therefore assumed to represent a silty sand with the lower bound fines content of 15%.

Detailed calculations for the liquefaction triggering analysis are presented in Attachment E. Results indicate that sand-like soils within the upper 20 feet below ground surface are not anticipated to liquefy under the design seismic loading with the exception of a thin layer between 14 and 16 feet bgs encountered in GW-38 that resulted in a FS greater than 1.0 but less than 1.1,

				G	Itec ^D		
				Page	38	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SL	C1025	Та	sk No.:	01

which indicates there is potential for localized liquefaction to occur in this layer. The potential for seismic settlement in this layer is less than ½ an inch and localized to the location of GW-38 (Figure 1). Considering the dense nature of the sands in Unit 3, localized liquefaction will likely induce a dilative behavior and not adversely impact the strength of the sands. Therefore, these affects are not anticipated to undermine the stable conditions of the proposed Federal Cell.

6.3.1 Additional Liquefaction Analyses for Unit 3

In response to DWMRC's RFI dated 19 December 2022 Item D-2 requesting sensitivity analyses for the geotechnical engineering evaluations to account for spatial variability and inherent uncertainty of the subsurface conditions, additional boring logs (GW-16, -17, -18, -19A, -19B, -24, -27, -29, -36, -37, -38, included in Attachment A) were used to perform a focused liquefaction triggering assessment of the Unit 3 sand-like soils. The additional boring logs were selected based on proximity to the proposed Federal Cell and availability of meaningful data (i.e., groundwater, rig information, borehole diameter, etc.). Adding more SPT blow count data to the liquefaction triggering assessment is intended to capture the probable variability of the Unit 3 sand-like soils and reduce uncertainty in our liquefaction triggering results. Detailed calculations are presented in Attachment E2 with results presented on Figure 11. Results indicate that sand-like soils in the upper 26 feet are not anticipated to liquefy under the design seismic loading, with the exception of 4 out of 56 blow count data points (Figure 11) around 14 to 16 feet and 18 to 20 feet bgs suggesting the potential for localized liquefaction with resulting FS calculated as less than 1.0. The potential for seismic settlement in these layers is less than 1/2 an inch cumulatively. These effects are not anticipated to undermine the stable conditions of the proposed Federal Cell. As an additional conversative measure, the minimum $(N_1)_{60-CS}$ value from the liquefaction triggering analysis for Unit 3 sand-like soils was used to estimate a residual liquefied strength for a post-earthquake slope stability analysis discussed in Section 4.12. Results indicated that residual liquefied strengths will still yield a stable condition post-earthquake.

6.4 Cyclic Softening of Clay-Like Soils

Cyclic softening is a phenomenon where fine-grained soils do not undergo liquefaction, but experience reduction in strength and stiffness caused by cyclic deformations due to increase in pore pressures during seismic shaking. Previous analysis concluded that cyclic softening is highly unlikely, presenting a very low related risk of cyclic softening (of Units 2 and 4 clay-like soils) (AMEC, 2012). Considering that most clays in upper Unit 4 will be removed as part of construction of the proposed Federal Cell and given the stiff nature of Unit 2 clays, Geosyntec generally agrees

				G	Itec ^D		
				Page	39	of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	ay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Prop	osal No.: SLO	C1025	Та	sk No.:	01

with this conclusion from the DWMRC's prior licensing decisions. Geosyntec has evaluated the global stability of the Federal Cell for a post-earthquake event that results in 50% strength reduction of all clay-like soils, clay-liner included representing a conservative and less likely strength reduction scenario. The results of this stability condition are discussed in Section 4.11. Results indicated that even a strength reduction of 50% in the clay-like soils and liner will still yield a stable condition post-earthquake.

7. CONCLUSIONS

7.1 Global Static, Seismic Slope Stability and Deformation

Based on the results of Geosyntec's slope stability analyses, the design of the proposed Federal Cell will remain stable for global static short-term (including interim), long-term, seismic, and post-earthquake conditions presented in this package. Results are presented in **Attachment B**, **B2**, **and B3**. Based on the results of the seismic deformation analysis, the design of the proposed Federal Cell slopes and cover will not experience significant seismic induced deformations (<5 mm). Results are presented in **Attachment C**.

7.2 <u>Settlement</u>

Based on the results of the settlement analyses, the current load of the proposed Federal Cell may result in up to 11-inches of elastic settlement of sand-like soils, 12-inches of primary consolidation of clay-like soils, and 6-inches of secondary compression settlement of clay-like soils. Elastic settlement and primary consolidation settlement presented in this package should be complete within one year after the embankment waste placement (within the required settlement monitoring period) and is not interfere with the post-construction performance of the cover. The 6-inches of secondary compression settlement of clay-like foundation soils should occur over a compliance period of 10,000 years and are not projected to impact the long-term performance of the cover and embankment. The magnitude of settlements estimated here are for the top deck portion of the embankment where the maximum embankment height is experienced and expected to decrease linearly over the top slopes to essentially no settlement at the toe of the embankment. Therefore, settlement of the foundational soils as a result of construction of the Federal Cell are not expected to adversely impact the adjacent cells. Results are presented in **Attachment D & D2**.

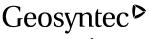
7.3 Liquefaction and Cyclic Softening

Based on the results of liquefaction triggering analyses and seismically induced cyclic softening, these hazards are not projected to undermine the stable condition of the proposed Federal Cell.

				Ge	ntec ^D	
				Page	40 of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Baturay	Date:	3/17/21
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL	C1025	Task No.:	01

Seismically-induced settlements of the sand-like soils are negligible (<1 inch.) In the event that sand-like soils liquefy, liquefied residual strengths would still yield a stable slope condition post earthquake. Cyclic softening of the clay-like soils is highly unlikely to occur as a result of the design seismic event (0.24g PGA and 7.3 Mw), nevertheless a 50% strength degradation of the clay-like soils would also still yield a stable slope condition post-earthquake. Results of the sand-like soils liquefaction analysis are presented in **Attachment E & E2** and the post-earthquake softened clay stability analyses are provided in **Attachment B**.

consultants


				Page	41 of	43
Written by: M. Downing	Date:	3/11/2021	Reviewed by:	B. Batura	·	3/17/21
Client: ES Project: Federal Cell		Project/ Propo	osal No.: SL	C1025	Task No.:	01

8. REFERENCES

- AGRA (1999). Geotechnical Site Characterization for Proposed New LARW Embankment, Clive, Utah, October 1999.
- AMEC (2005). Combined Embankment Study for Class A Waste Embankment, Clive, Utah, December 2005.
- AMEC (2011). Geotechnical Update Report for Class A Waste Embankment, Clive, Utah, February 2011.
- AMEC (2012). Seismic Hazard Evaluation/Seismic Stability Analysis Update for Clive Facility, Clive, Utah, April 2012.
- Bingham Environmental (1992). Hydrogeologic Report Part 1 & 2 for Clive Facility and Addendum 1&2, Clive, Utah.
- Das, B.M. (2016), "Principals of Foundation Engineering," 8th Edition

Division of Waste Management and Radioactive Control (DWMRC) 2012 Class A West licensing decision (2005 & 2011

- DWMRC (2021). Technical Report for Performance Objective R313-25-23 Stability of the Disposal Site after Closure, Federal Cell, Clive, Utah.
- EnergySolutions (2020). Drawings 14004 C01-05 for Federal Waste Cell, Clive Facility, Utah, January 2020.
- Energy Solutions (2021). Drawings for Federal Waste Cell Revised Waste Limits, Clive Facility, Utah, February 2021.
- Federal Highway Administration (FHWA) (2002), "Geotechnical Engineering Circular No. 5, Evaluation of Soil and Rock Properties."
- GEO-STUDIO International, Ltd. (2019). "SLOPE/W," version 10.2.0.19483, Calgary, Canada.
- Hatanka, M. and Uchida, A. (1996). "Empirical correlation between penetration resistance and internal friction angle of sandy soils," Soils and Foundations, Vol. 36, No. 4, pp. 1-9.

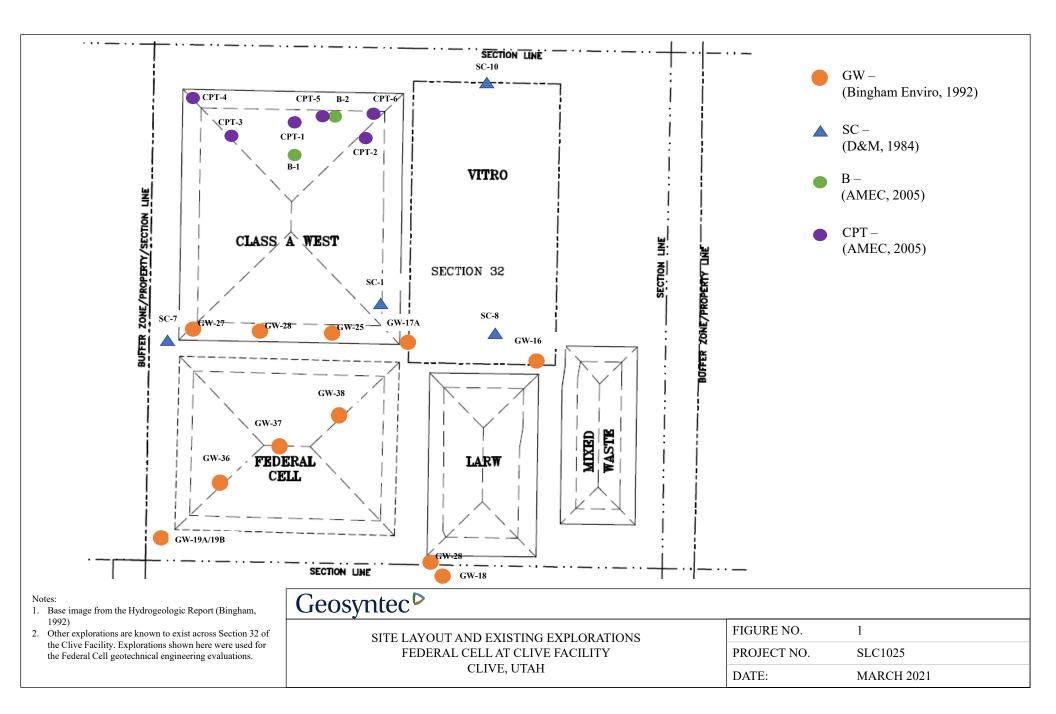
consul	tants
--------	-------

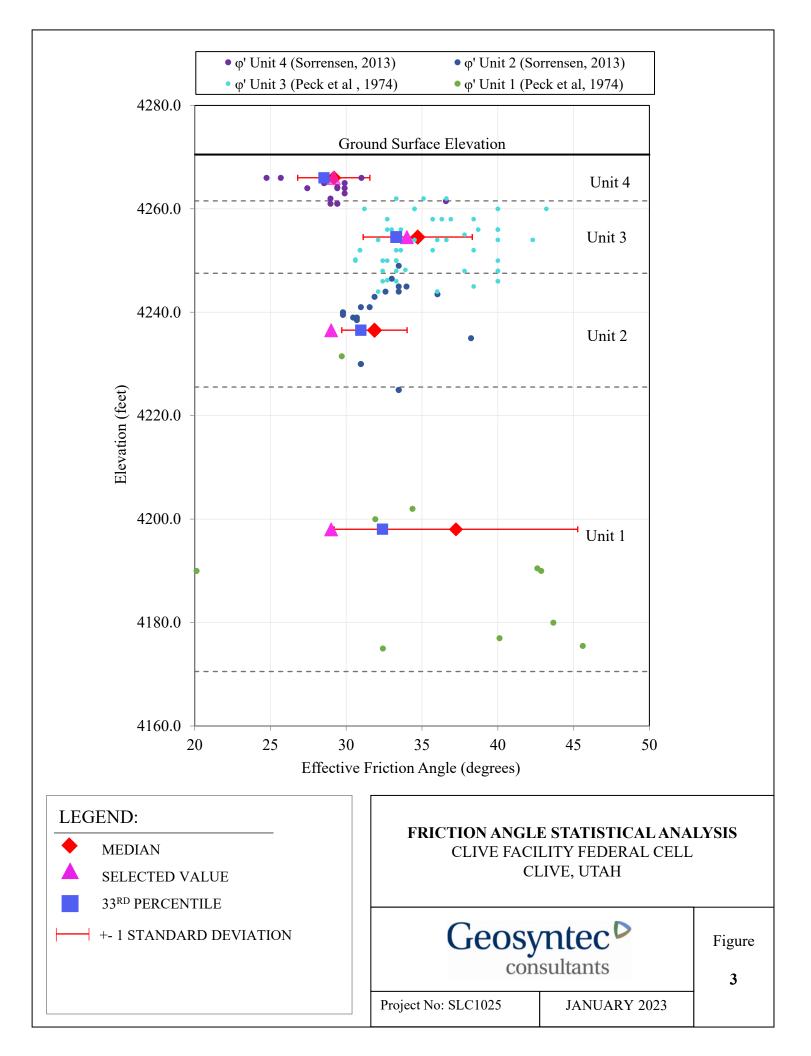
							Page	42 of	43
Written by: M. Downing		Date:	3/11/2021	Reviewed by:	B. Batura	•	3/17/21		
Client:	ES	Project:	Federal Cell		Project/ Propo	sal No.: SL	C1025	Task No.:	01

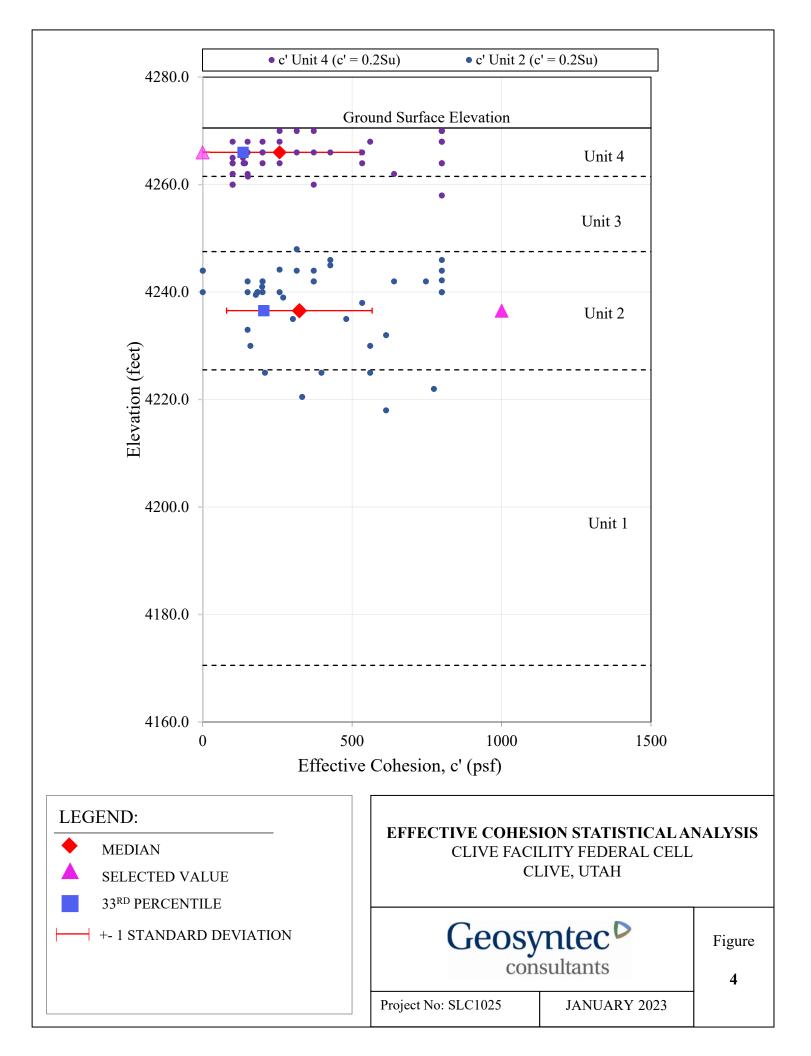
- Hynes-Griffin, Mary E. and Franklin, Arley G. (1984). Rationalizing the Seismic Coefficient Method. Paper GL-84-13, Geotechnical Laboratory, Waterways Experiment Station, US Corps of Engineers.
- Idriss, I. M. and Boulanger, R. W., [2008], Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute (EERI), Monograph 12.
- Lee, K-J, Kim, S-K and Lee, K-H, 2014. (2014). Flowable Backfill Materials from Bottom Ash for Underground Pipeline. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453207/</u>
- Neptune and Company, Inc. (Neptune) (2015a). Final Report for the Clive DU PA Model v1.4, November 2015.
- Neptune (2015b). Radioactive Waste Inventory for Clive DU PA Model v1.4, November 2015.
- Makdisi, F.I., and H.B. Seed [1978] "Simplified Procedure for Estimating Dam and Embankment Earthquake-Induced Deformation," Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT7, 1978, pp. 849-867.
- Peck (1953). Foundation Engineering. John Wiley and Sons, NY.
- Peck et al. (1974). "Relation of N-Values and Friction Angles."
- Qian, et al. (2002). Geotechnical Aspects of Landfill Design and Construction.
- Schmertmann (1975). "Measurement of In Situ Shear Strength," Conference on In Situ Measurement of Soil Properties, Raleigh, NC.
- Seed, Raymond B., and Harder, Leslie F. Jr. (1990). "SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength." Proceedings of Memorial Symposium for H. Bolton Seed, J Michael Duncan ed., BiTech Publishers, Vancouver, B. C., Canada, Vol. 2, pp. 351-376.
- Sorensen K.K. and Okkels N. (2013) "Correlation between drained shear strength and plasticity index of undisturbed overconsolidation clays" International Society for Soil Mechanics and Geotechnical Engineering, 18th International Conference on Soil Mechanics and Geotechnical Engineering.

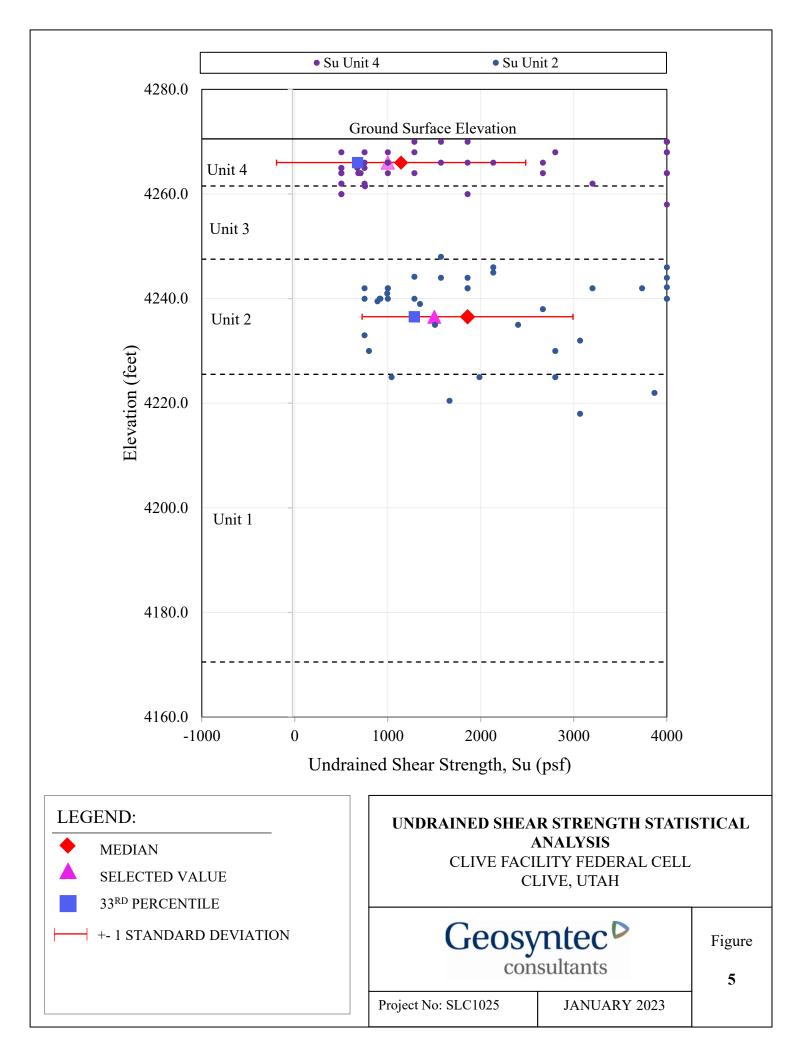
consultants

							Page	43	of	43
Written by: M. Downing		Date:	3/11/2021	Reviewed by:	B. Batura	·		3/17/21		
Client:	ES	Project:	Federal Cell		Project/ Propo	osal No.: SL	C1025	Та	sk No.:	01

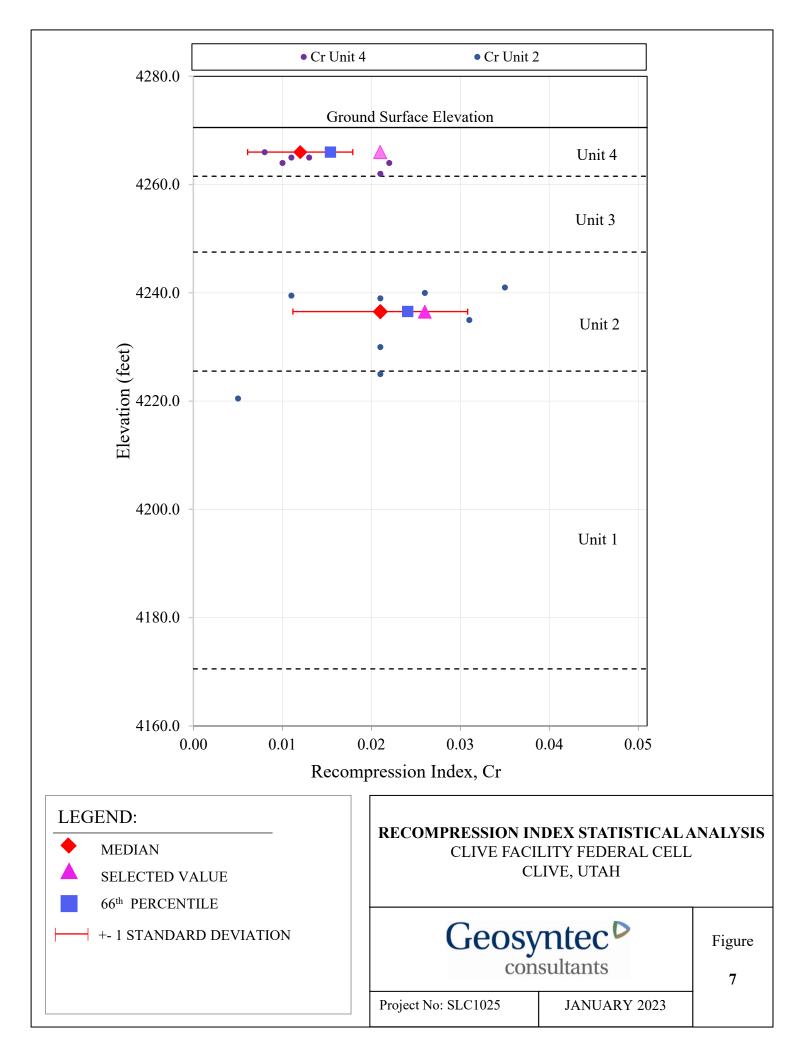

Stantec (2020). Phase 1 Basal Depth Aquifer Study for Clive Facility, Clive, Utah, September 2020.

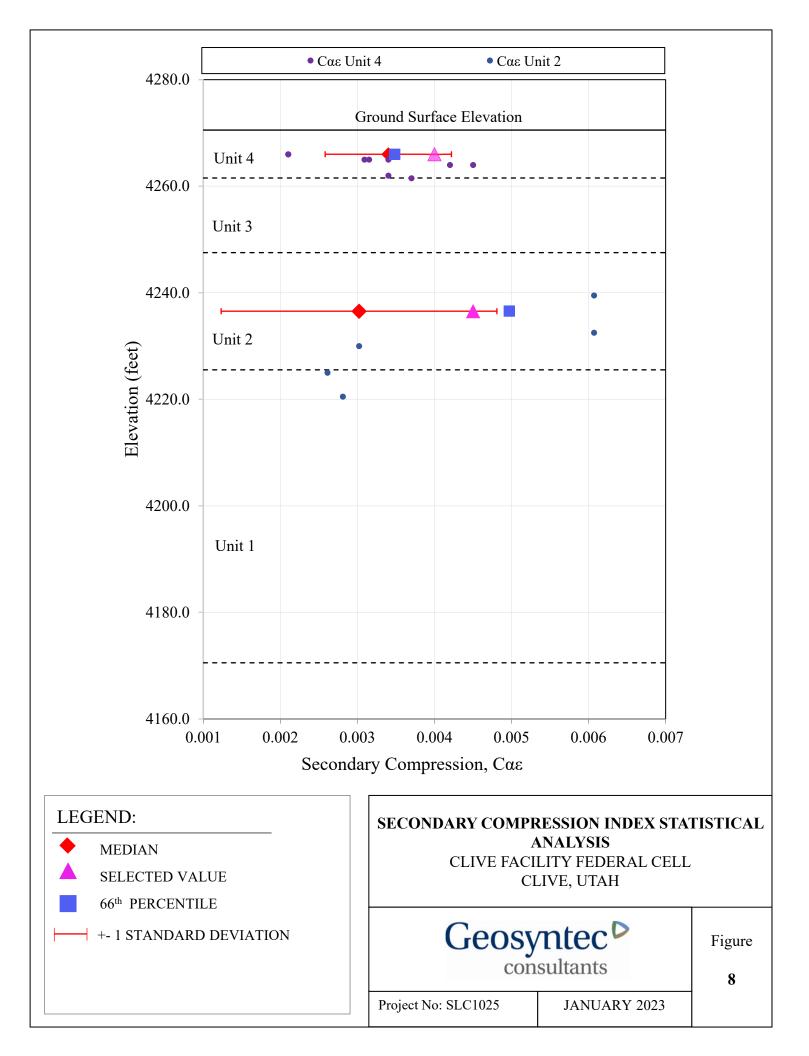

Seismicmaps.org

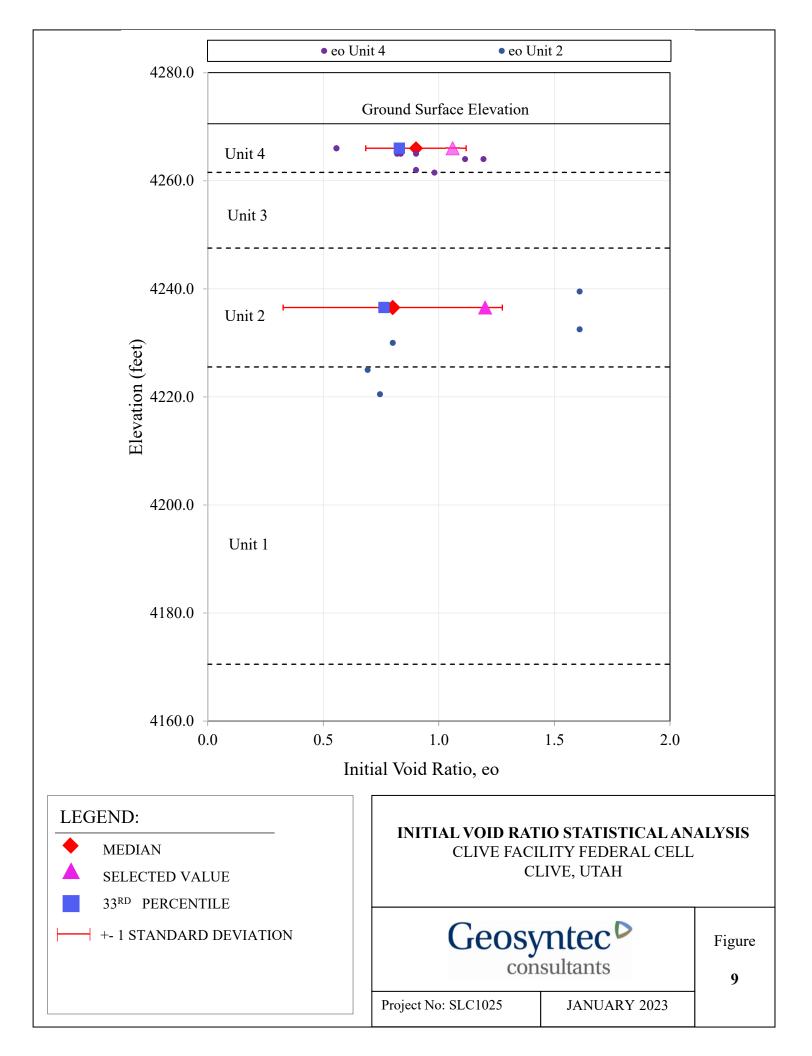

US Army Corps of Engineers (USACE) (2003). Engineering and Design Slope Stability, Engineering Manual No. 1110-2-1902, October 2003.

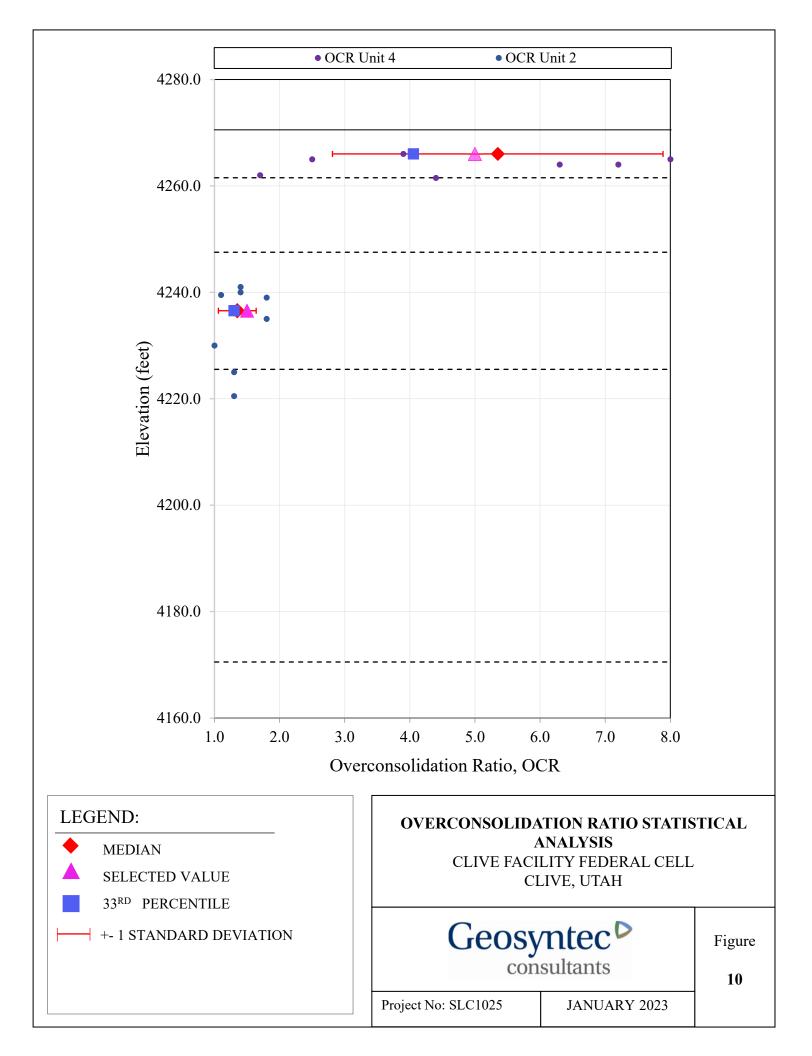


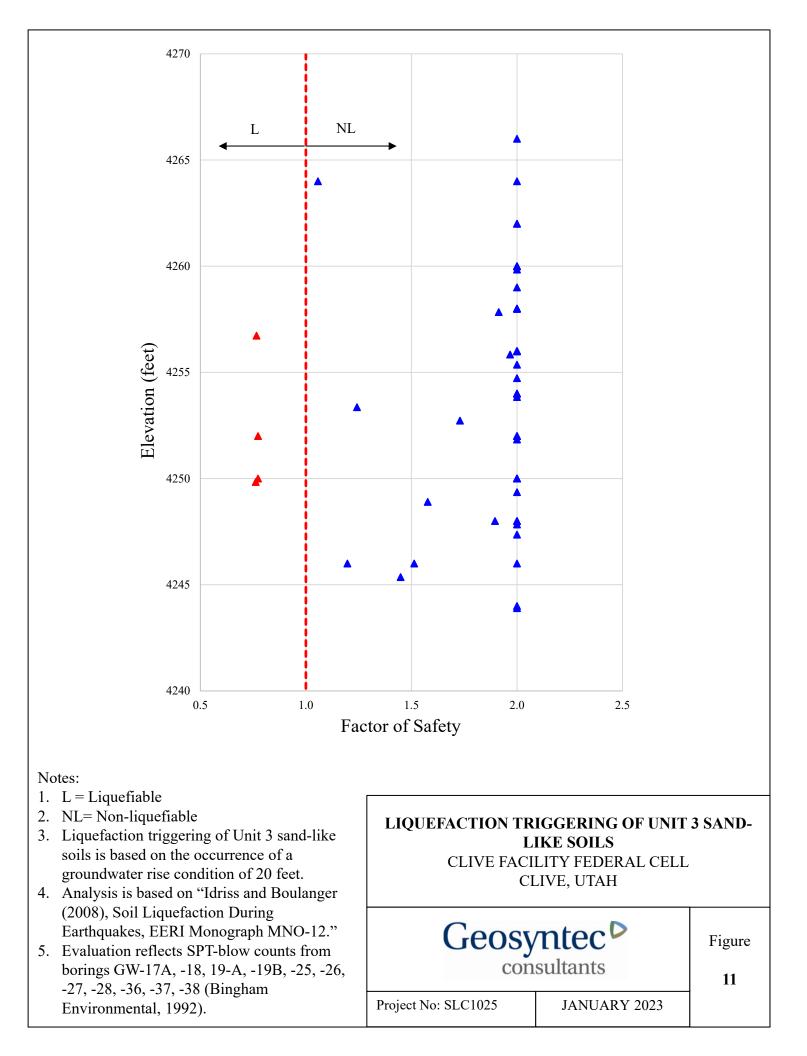
FIGURES

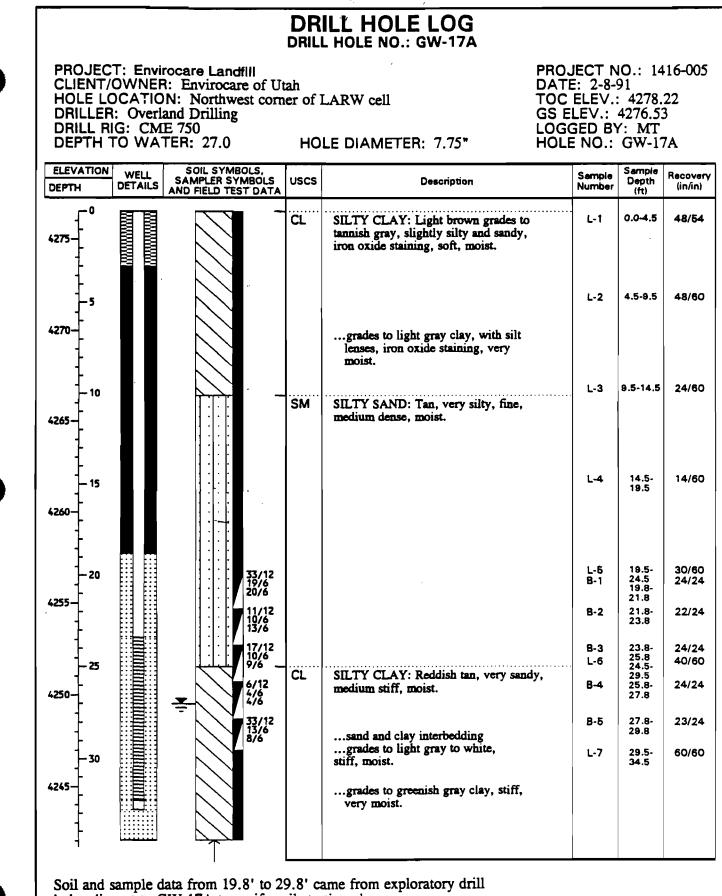










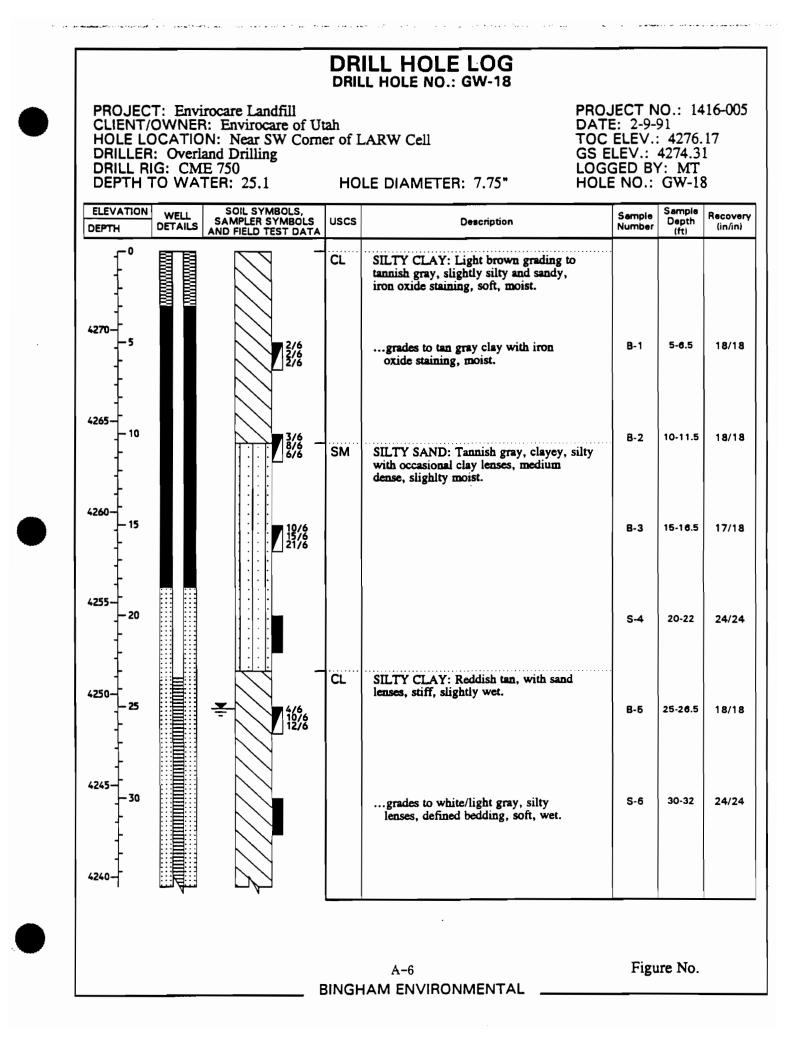

ATTACHMENT A

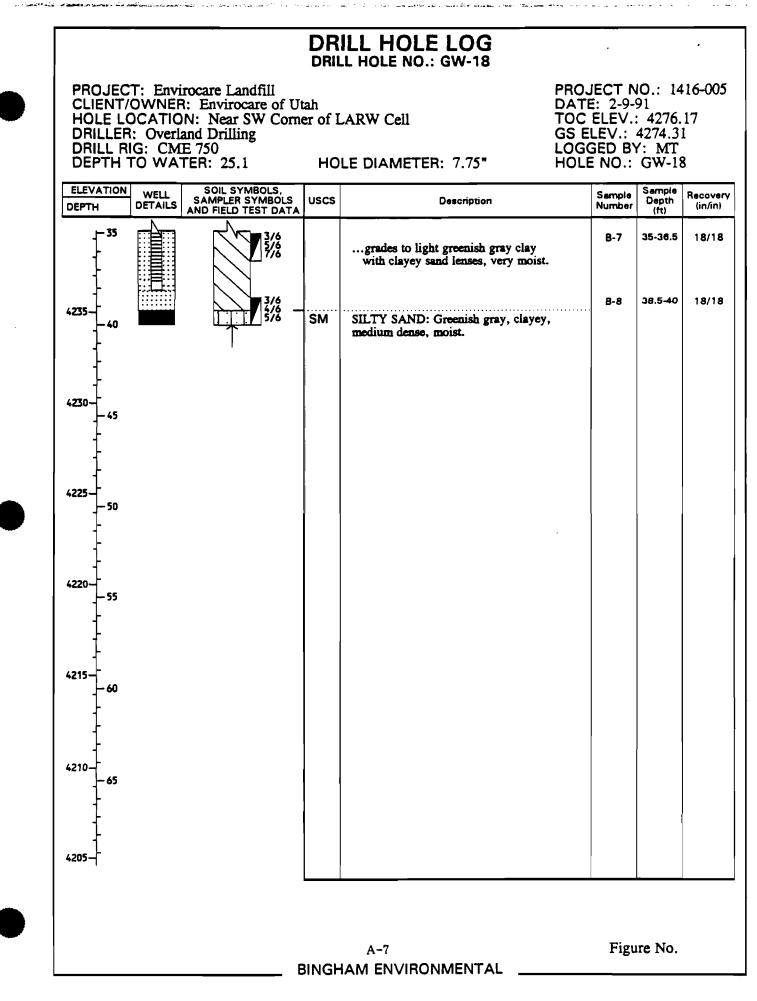
Source / Date			D&M 1984	D&M, 1984	D&M, 1584	D&M, 1984	D&M, 1384	D&M, 1984		Bingham Eng	Bingham Eng	Bincham Eng	Bingham Eng	Bincham Eng	Bingham Eng	osngnam cng	AGRA, 1939	AGRA, 1999	AGRA, 1999	AGRA, 1999	AGRA, 1999 AGRA, 1999	AGRA, 1999	AGRA, 1999	AGRA, 1999. AGRA 1999		AMEC, 2004	AMEC. 2004	AMEC, 2004	AMEC. 2004	AMEC, 2004	AMEC, 2004	AMEC. 2004	AMEC, 2004	MEC, 2004	MEC. 2004	AMEC, 2004																		
OCR		r c	2.5	1.8	1.4	4.0	44	7.2		9.5 6.3		1.8	1.7																						8			4	- 1.3									1.1		1.3				1
Pc Dsf		ason	1400	6200	4000	4000	4000	4000	0000	4000	000+	6200	1600																						4600			4000	0009	6000								3200		6000				
స		0.040	0.012	0.030	0.034	0.040		0.009	200.0	0.007	0.06	0.020	0.020																,						0.01			C20.0	0.02	0.02							+-	0.01		0.004				
ပိ		0.180	0.120	0.216	0770	0.075	0.239	0.441	0 500	0.160		0.100	0.100																						0.13		0.13	0 125	0.08	0.08								0.22		0.125	_			
, Su _{(lab} vane) psf																																					020	2800	1985	1615	-+-													
Atterberg Limits LL PL PI		10	\vdash	-	+	2	┝	13	-	9	+	18	4		13	2	~	12	=	24	5 4		315	2	1	24	4	s f	2 5	0	12	o 1	ສຸດ		15	-		19	6	5				15	+	+	+-	21			+			
Atterberg LL PL		4 14	+-+		-+	+	16			1 26	+	22	_	-	21	┼──			-		+	+	+-	+	+	24		18	+-	-	21	15	20		20		33	11	6	53			2	24				28						_
4		24	$\left \cdot \right $	24		ĩ	20	36	3	4		40	8	+	34		19	33	8	4	R K	3 2	35	28	40	48	E C	3 23	34	27	33	5	S 8		35		43	333	28	58	1		4	62	_			48						
Gradation Gravel % Sand % Silt-clay			$\left \right $		+							-+	_	-		-		_		-	_															4 F	-			57	20	43												
Gradation avel % Sand %		-		+	+	$\left \right $			-	-			-		-			_	_		-		-						-			_	-		12	: :	3			5	44	57			\Box									
*				_	-				-				_	-						_															c	2		j		-	- ന				Ì									
γ _{tot} pcf			114		<u> </u>	\vdash		92.3	128	106	149	115	121	123		123	143											ļ							115		98.2	121	125	611			112.0	116.0	142.8	120.8	115.3	103.9	24.1	18.8	129.6	28.5	25.7	12.51
' ^{, dry}		60	85.4	60.6	77.9	98.8	77.6	65.2	106	73.2	112	79 87.5	104	82.4		96.7	104																		8.78	1	59.9	93.3	98.8	77	╎		-		+	+		-+		91.8	-	105	+	- ·
W.C.		32%	34%	67%	44%	21%	37%	42%	21%	45%	33%	46% 34%	16%	49%		27%	38%										1	1	1					-		16.7%					16.7%	23.1%	31.5% [- · ·	+		60.7% 60.7%	_	29.5%	-	22.6%	_	_
uscs				T								+	-	1-					-+-		+		i		-			╀╴			+		+			, <u>-</u>	ML	ML 3(ML 26		1	N 2:							+					
				╉			-+		ay [۲ ۲	<u>व</u>	2 3		2 P	$\left \right $	P	2		+		-	-				-					-	-	\downarrow	Z	SM L		5	5			S	ົດ		S	SM	۷S	NS C	5 X 		5 D	SC	NS 6	n c	
Soil Description	s								Silty Cl	Silty Cla	Silty Sar	Silty Clay	Silty Sar	Silty Sar		Silty Sand	Silty Cla																																					
Depth . ft	ion Soils	40.0	35.0			1			4.0	6.0	23.0	31.U 8.3	20.0	28.0		-		29.5	31.5	9.0	29.0	4.0	9.0	23.5	31.5	9 0 0 0	26.5	5.0	27.0	25.0	71 D	25.0	26.0	Ľ	12	52	30.5	40	45	69	80	8	2	10.5	15.5	20.5	3.5	7.5	9.5	60.5	0.5	80.5	6.0	1
Boring No.	Foundation	SC-1	<u>زاد</u>	SC-8	C-10	2-84		40-7-	GW-16					417A	GW-18		91-2	V-24	V-24	V-27	V-27	V-29	V-29	<u>-29</u>	62-7	DH-33	-33	-		· .	DH-51	1				-					┦┈╽		-	+	+	- f		+	+	+	$\left \right $	-+		1
ш 			<u> </u>	_	S	ភ្	ភី រ	ดี	Ū,	<u>6</u>	30	56	80	80	ΰ	δĺč	2	<u>o</u>	j∂	0 ∂	δ	З О	ð	30	ة [خ	ΒĒ	HQ	NS V	ğ			Б	Ð	Г С	히	DH-HO	占	히	칠	티	DH-1	리	ц	à	B-2	с с		ာ တြ		ġ	ά d	m a		

12/06/2004: 2:29 PM

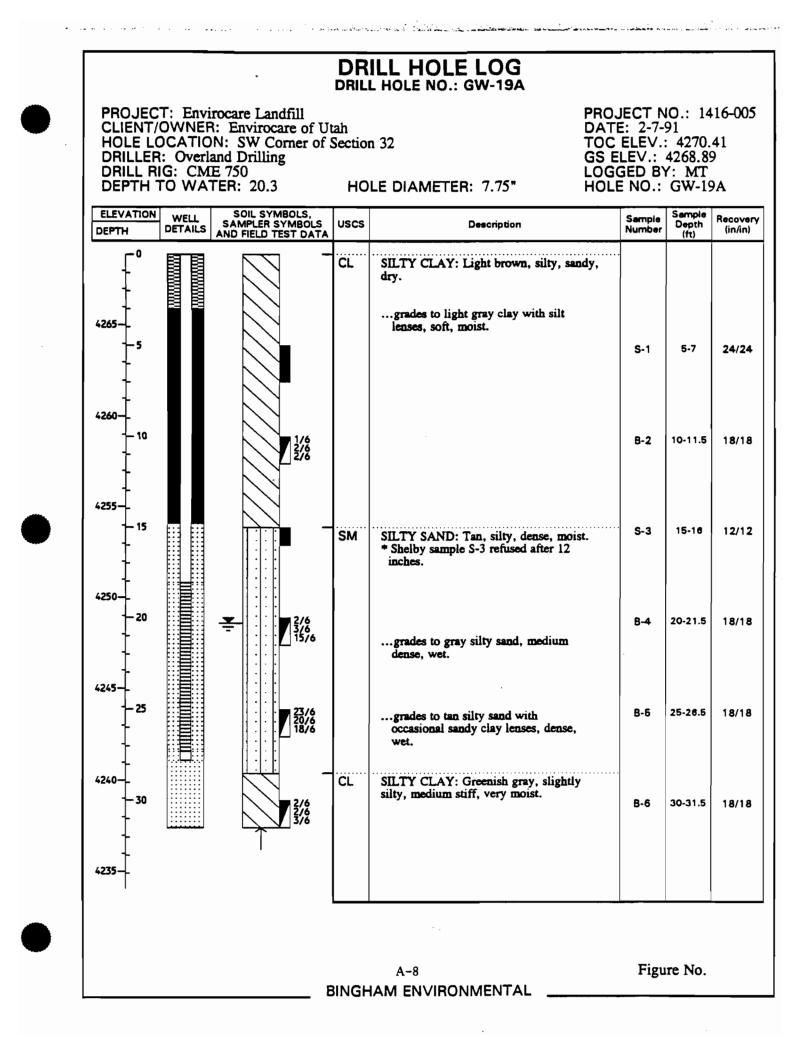
במט שמומ	
Lau	
וויטטוש	
2111 5	
י כשווווים א טו בוועווטכסופ ב	
•	
	ĺ

shared\..\enviro_field_lab\Lab_data

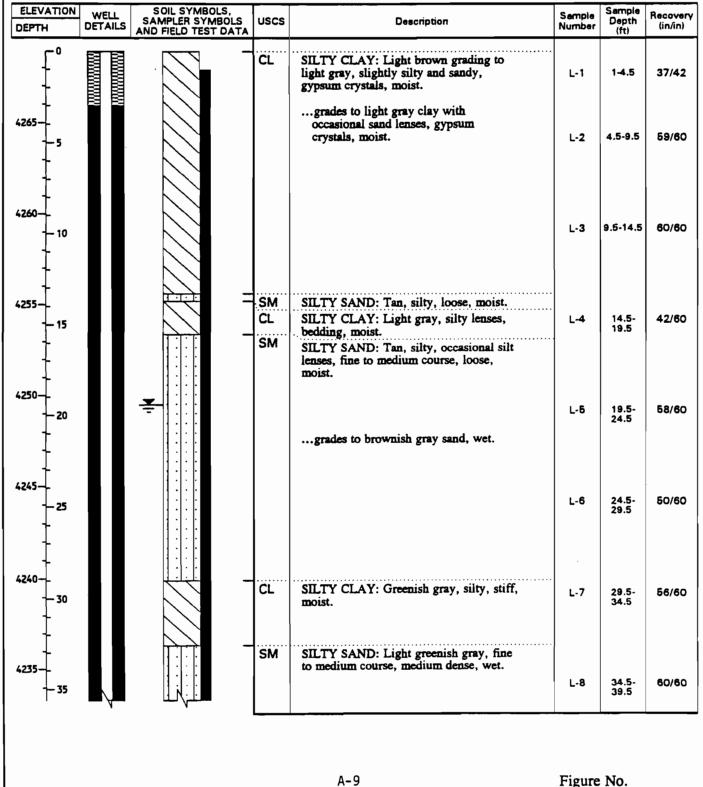

hole adjacent to GW-17A to verify soil stratigraphy.


وروار والمنافعة فستحصص معجز والجماورة

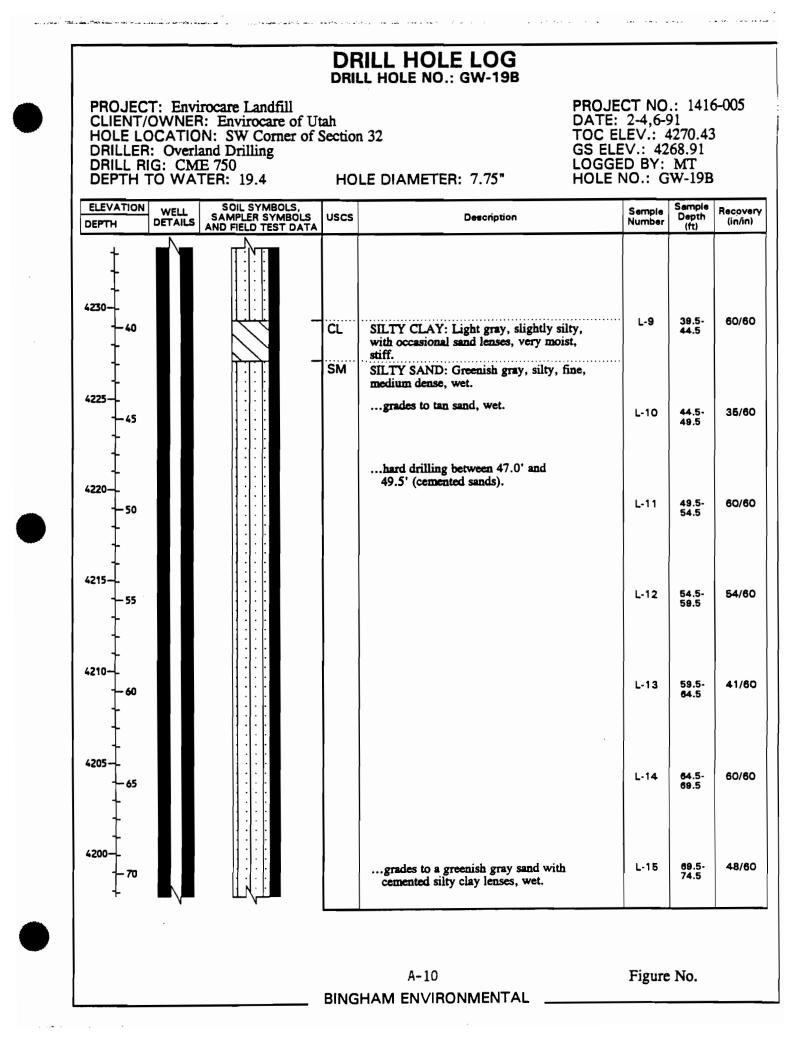
in each that and the second

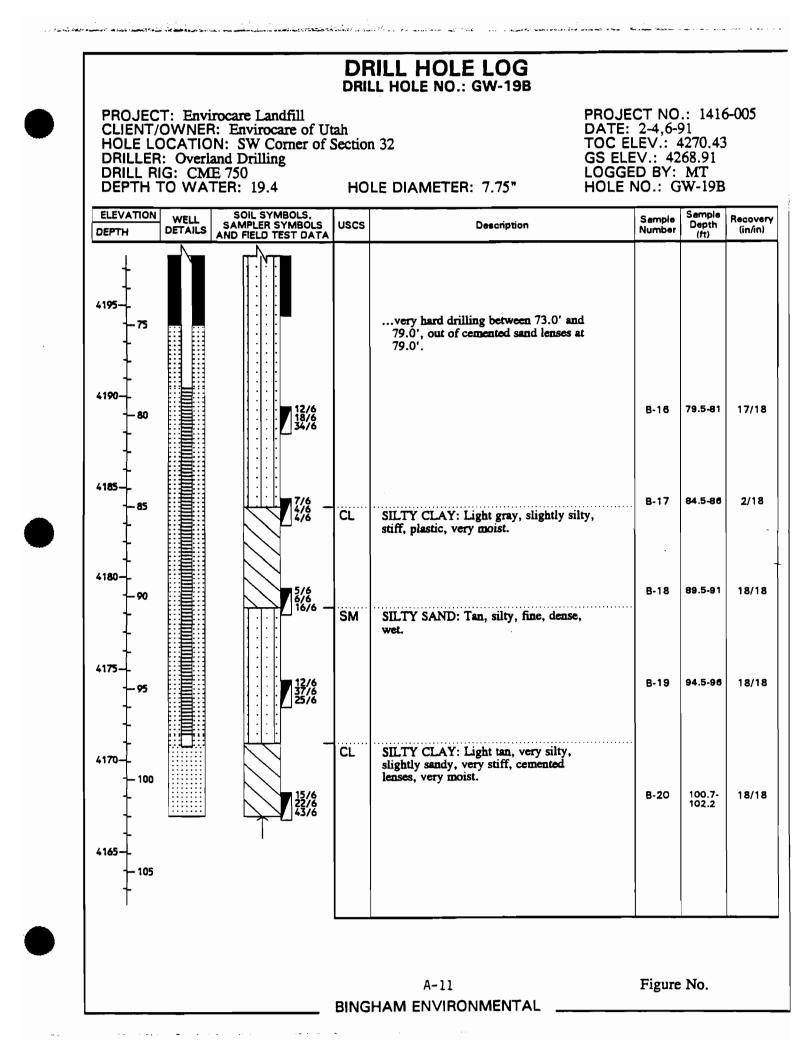

Figure No.

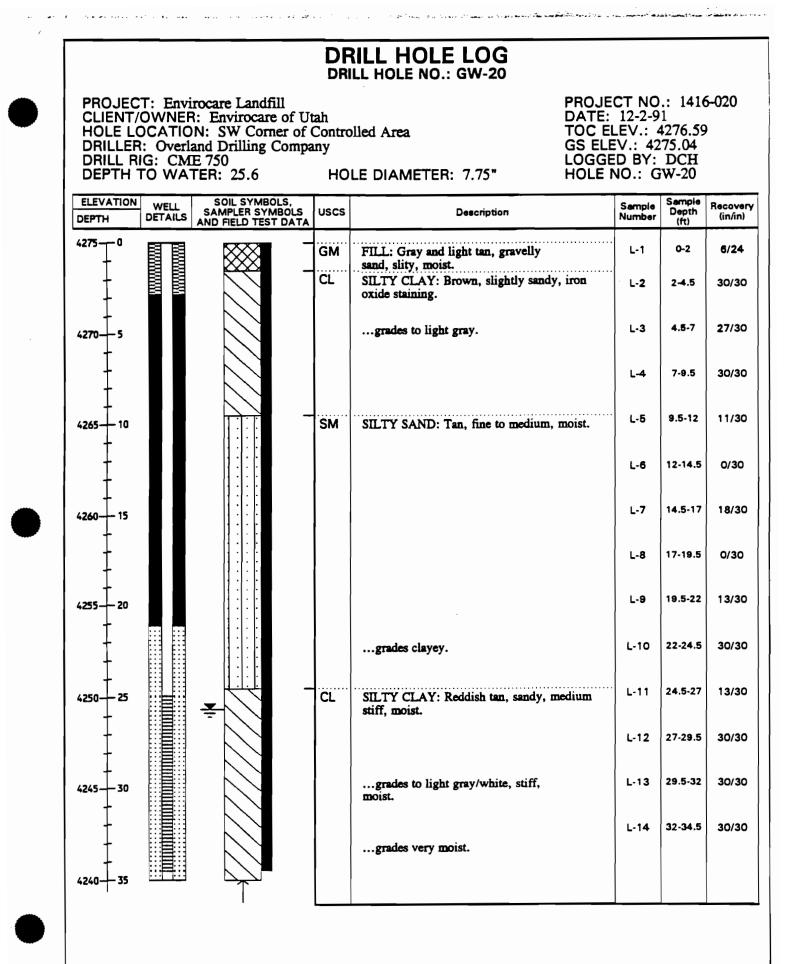
and a second second

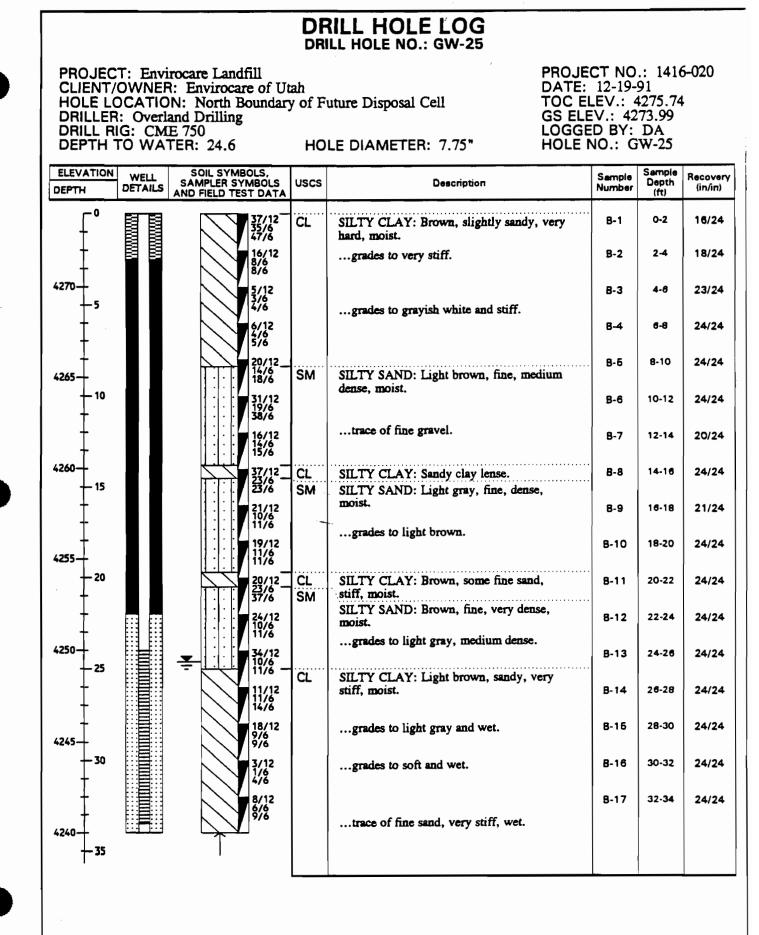


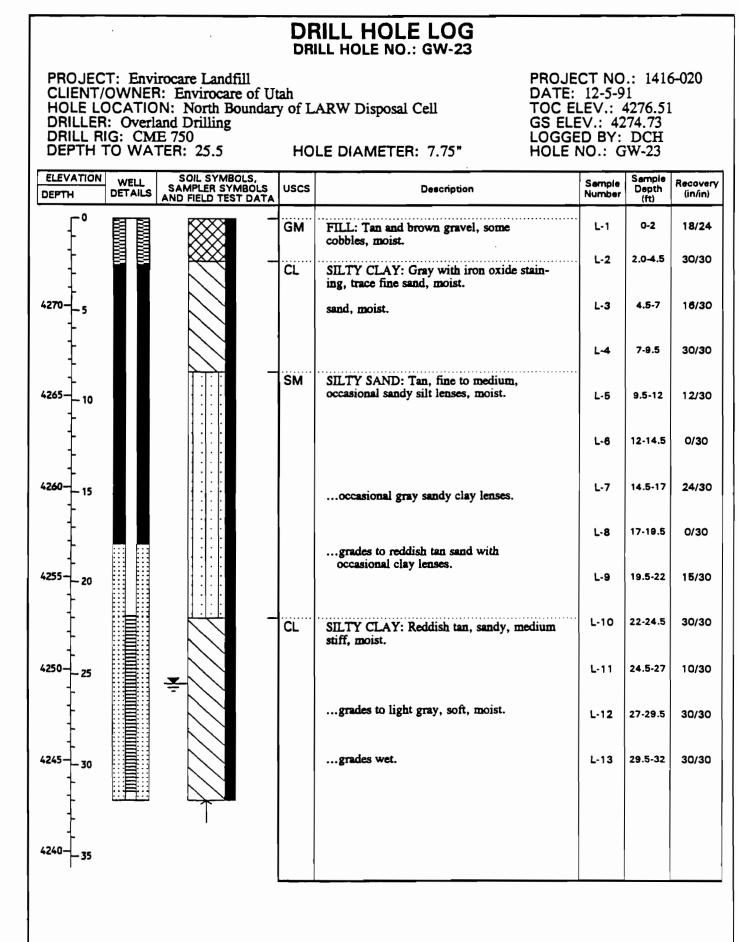
فالمتحاف المراجع والمتحد والمتحد والمتحد



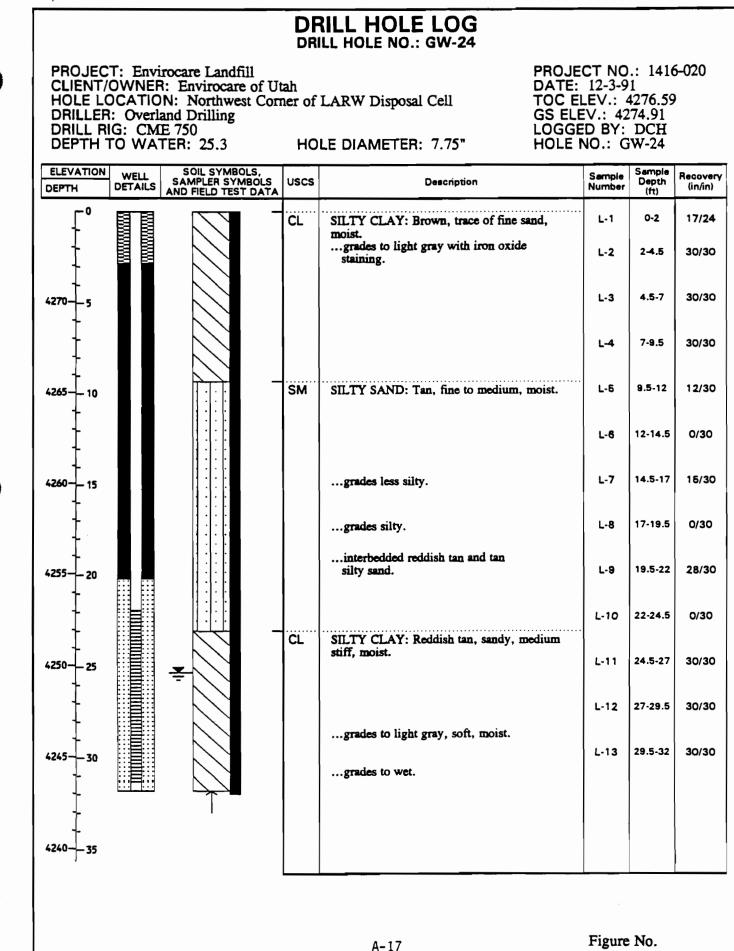

DRILL HOLE LOG DRILL HOLE NO.: GW-19B


PROJECT: Envirocare Landfill CLIENT/OWNER: Envirocare of Utah HOLE LOCATION: SW Corner of Section 32 DRILLER: Overland Drilling DRILL RIG: CME 750 DEPTH TO WATER: 19.4 HOLE D HOLE DIAMETER: 7.75" PROJECT NO.: 1416-005 DATE: 2-4,6-91 TOC ELEV.: 4270.43 GS ELEV .: 4268.91 LOGGED BY: MT HOLE NO .: GW-19B


BINGHAM ENVIRONMENTAL



A-12 BINGHAM ENVIRONMENTAL



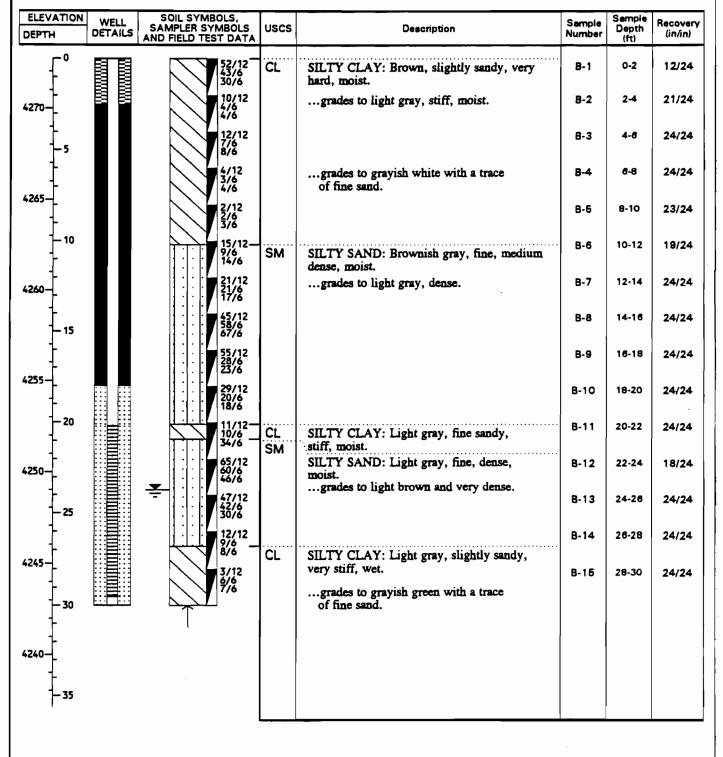
A-18 BINGHAM ENVIRONMENTAL

a hanna hill a constant and a second and a constant and a second s

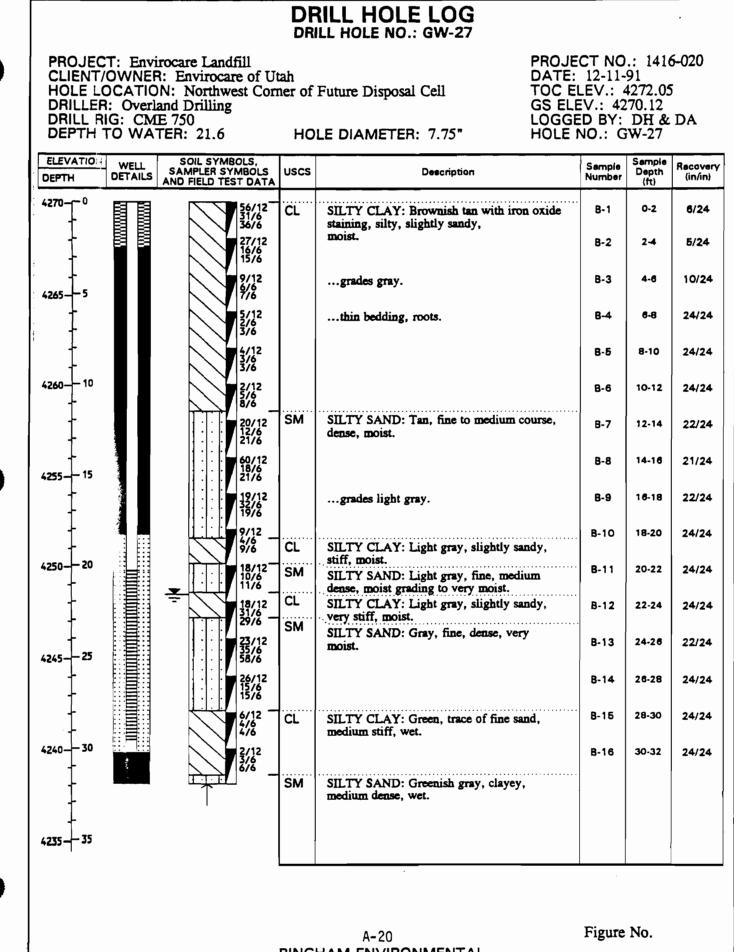
A-16 BINGHAM ENVIRONMENTAL

المراجعة بصفور بالائد الإسكنكلام الممامين يطفأ أأربدهم ليكوهد المحجر المريد

BINGHAM ENVIRONMENTAL



المراقب المستحدية ويستشتم والمتكنية والمتكلية والمستعلم والمتعاد


PROJECT: Envirocare Landfill CLIENT/OWNER: Envirocare of Utah HOLE LOCATION: North Boundary of Future Disposal Cell DRILLER: Overland Drilling DRILL RIG: CME 750 DEPTH TO WATER: 23.7 HOLE DIAMETER: 7.75"

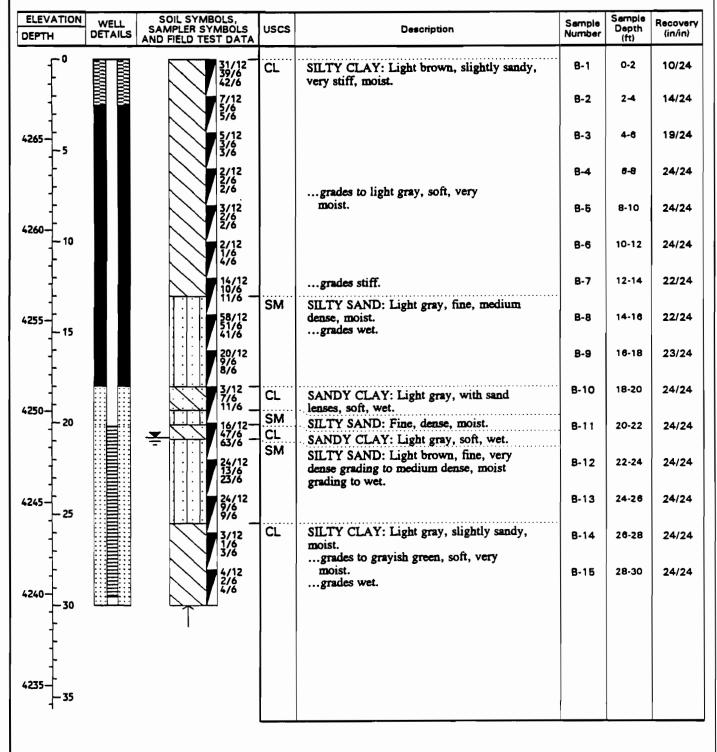
and the state

PROJECT NO.: 1416-020 DATE: 12-20-91 TOC ELEV.: 4274.16 GS ELEV.: 4272.71 LOGGED BY: DA HOLE NO.: GW-26

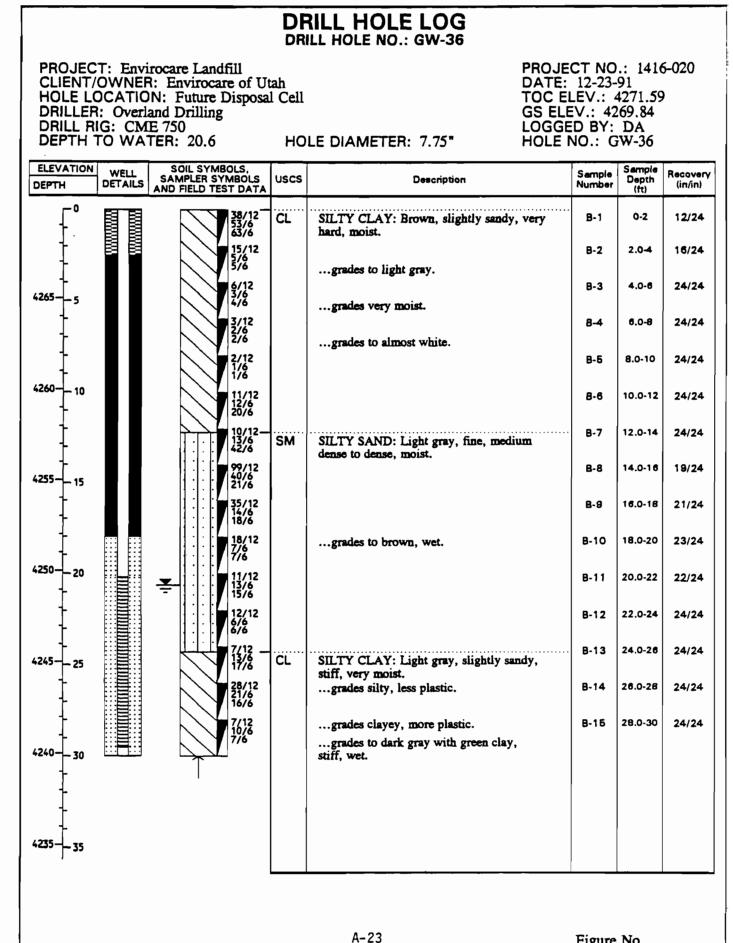
A-19 BINGHAM ENVIRONMENTAL

.

The second second second second second


والاستعمار المعاطيفان فحميشان يهام

BINGHAM ENVIRONMENTAL


DRILL HOLE LOG DRILL HOLE NO.: GW-28

بالمراجعة الجاجيج والعارية متنافر البيع الربية المعطور بياء

PROJECT: Envirocare Landfill CLIENT/OWNER: Envirocare of Utah HOLE LOCATION: West Boundary of Future Disposal Cell DRILLER: Overland Drilling DRILL RIG: CME 750 DEPTH TO WATER: 20.8 HOLE DIAMETER: 7.75" PROJECT NO.: 1416-020 DATE: 12-17-91 TOC ELEV.: 4271.13 GS ELEV.: 4269.36 LOGGED BY: DA HOLE NO.: GW-28

A-21 BINGHAM ENVIRONMENTAL

والمالات والدارية والمالية والمتحاصل وعاريتهم ومنتار عناصط تعط تعتب أنا ومروع فالمالية فالمتحال المتحال والمالي والمالا

BINGHAM ENVIRONMENTAL

PROJECT	<u>Enviro</u> <u>Near C</u> -817-0047	care live 69	e Fa e, U	acility tah DATE	10-0	7-04		LOG	OF TEST BORING NO. B-2
nuous ation	cal	U	e Type	foot b. 30 fall hammer	Density per ic foot	Height Height Height	fied ssifi- ion	SURFACE ELEV	Marl M-10 4.25" Hollow-Stem Auger
Depth in Feet Contir Penetr	Gra Log	Sample	Sam	Blow 140 drop drop	C C C C C C C C C C C C C C C C C C C		·-·- (0+-	REMARKS	VISUAL CLASSIFICATION
0								dry	SILTY CLAY with some fine sand; light gravel; no topsoil; roots present; open structure; loose to 6"; desiccated
5			D	7	86	31.5	CL	moist medium stiff	gray with oxidation stains
							SM	slightly moist	SILTY SAND with trace fine gravel;
10		=	D	67	112	3.4		medium dense	fine to medium sand; light brown
		<u>=</u> .							
15			D	54	128	11.5		moist	grades silty fine sand; light brown
20		= = =	D	32	101	19.1		slightly moist	occasional silty clay and silt layers
			D	54	102	12.6		moist	
25	GROUNDWA	TEP				SAMP	LE TYPE		
⊒ 37.3 Ž	H HOUR		DA	-04 S	- 2" 0.	cutting D. 1.38" D. 2.42"	s I.D. tuk I.D. tuk	pe sample. De sample.	FIGURE B-6A
₹L				T D	- 3" 0.	D. thin- " O.D. 2	walled Sh	tube. tube sample.	amec ⁰

PROJE	ЕСТ	Enviro Near C 17-0047	care live	e Fa , U	tah				LOG	OF TEST BORING NO. B-2
JOB N		<u>17-0047</u>	69				7-04			M1 M 10
	ion			Type	30+ 100 -	+4 +4	4+ 20		RIG TYPE	4.25" Hollow-Stem Auger
		Gal		تر ۲	a - 30	foot	0 0 0	<u>н</u> .		
ء	-+ v	Graphica Log	<u>a</u>	<u>e</u>				os -i	DATUM	
Depth in Feet	ene ene	a b	Sample	dug	-40 00 00 00 00	ភូសុក្ម	10 10 10 10 10 10		REMARKS	VISUAL CLASSIFICATION
	പ്പ്ക്	ٽٽ	လိ	လိ	844D		ECOUC	ဥလှင် ရ		
25										
			· · · · ·			_		CL	very moist to	SILTY CLAY; gray
		14							wet	
		1/2							medium stiff	
	_	11/								a few sand layers and stringers
20										throughout
30		14	=,	D	8	65	60.7			
		111	*							
		112	=							
		111								
		11/								
		1/2								
		1/1		-						
35										
55										
		111		\vdash						grades slightly cemented with
										fine sand; greenish-gray
¥										
		1.1	.=.	D	37		60.7	SC	saturated	CLAYEY SAND with some silt; fine sand; slightly cement; greenish-gray
			.].	-					very stiff	sand, singinity cement, greensin-gray
40		177								
		11/						CL	saturated	SILTY CLAY with some fine sand
		111							stiff	layers; light brown
		1/1								
		14								
		1/2								
		111					——			
45		11/1								
		111								
		111								
		1/1								
		111								
		11/1								
		11.			17	94	20.1			
		14	-	D	/	94	28.1			
50		GROUNDWA	ATER				SAMP	LE TYPE		FIGURE B-6A
[DEPTH	HOUR		DA	TE A	- Auger				(con't)
Ţ	37.3	11:00	10	-07	-04 S U	- 2" 0. - 3" 0.	D. 1.38" D. 2.42"	I.D. tu I.D. tu	be sample. De sample. helby tube.	
Ψ			1		Ť	- 3" 0.	D. thin-	walled S	helby tube. . tube sample.	amec ^o
					c	- Calif	ornia Sp	lit Spoo	, tube sample. n Sample	

DB NU	CT O ภูธิมู						4+ 20		RIG TYPE	Marl M-10 4.25" Hollow-Stem Auger
	hat i	ical	01	ц Ц Ц	/foot 0.30" fall Jammer	ensit Per foot	9 0 0 0 0 0 0		SURFACE ELEV.	••••••••••••••••••••••••••••••••••••••
Feet	ntir sheti sis:	Graphical Log	Sample	- dw	Blows free drop		1001 1000 1000 1000			VISUAL CLASSIFICATION
<u>- ա</u> 50 -	0 0 0 0 0 0 0	57	S	လိ	ወታታይ		ECTU ECTU	20 <u>-</u> a	REMARKS	
50		44		$\left \right $						
F		11								
-										
				\square						
55										
		14								
F		1/2				_				
F							-			
E		11								
-		11/2								
60		14	· _ ·	D	23	92	29.5		very stiff	grades fine sandy silty clay;
		11	=			92	29.5		very still	brown
			. <u> </u>							
-		<u> </u>						SC	saturated	CLAYEY SAND; some cemented
F	-								dense	layers; brown
ļ						-				
65										
-				$\left \right $						
-										
+				\vdash						
F		11								
70 -			=	D	80	111	16.6			
Ē			=							
-		14.		$\left - \right $						
F		11	ĺ							
F										
76		111					[
75	DEPTH		ATER	DA			SAMP cutting	LE TYPE		FIGURE B-6A (con't)

ľ

tinuous etration istance	Graphical Log	ple	Ple Type ⊌s∕foot lb.30" e-fall	10 0	sture tent cent of Weight	fied ssifi ion		Marl M-10 4.25" Hollow-Stem Auger
	Gra Log	Sample	С 1 1 1 1 1 1 1 1 1 1 1 1 1			C C C C C	REMARKS	VISUAL CLASSIFICATION
5	14							
						SM	saturated dense	SILTY SAND; brown
							uense	
)		=	D 93	105	22.6			
		=			•			
5								
					-			
				-				
				93	27.8			
)		-	D 29	103	22.7		medium dense	grades with occasional fine gravel
							dense	
5						CL	saturated hard	SILTY CLAY with occasional fine gravel and sand; brown
								0
	11							
			D 68					
		=						
)		ATER		A - Auge		PLE TYPE		FIGURE B-6 (con't)

+	istance 8-4	Graphica l Log	Ð	ple Type	57fo bral ham	Density Per ic foot	sture tent cent of Weight	fied issifi- ion		4.25" Hollow-Stem Auger
г е е		Gra Log	Sample	Sam	Blow free droe	n Sd Cub Sd		CONC C	REMARKS	VISUAL CLASSIFICATION
00			_							Second drilling at 09.5'
										Stopped drilling at 98.5'.
										Stopped sampling at 100.0'.
				\vdash						
05										
[
ſ										
						_				
10										
				\vdash						
15										
				\vdash						
ľ										
20										
-										
										The discussion in the text under the
ŀ										section titled, SUBSURFACE
										CONDITIONS, is necessary to a proper understanding of the nature
										of the subsurface materials.
25		GROUNDWA					SAMP	LE TYPE		
	DEPTH	HOUR		DA	TE A	- Auger	cutting	15	be sample. be sample. helby tube.	FIGURE B-6A (con't)

PROJI JOB N		Enviro West D 817-0025)esei	:	New LA near Cli _ DATE	RW Em ve, Utal 	1	2nt		OF TEST BORING NO. B-1
	nuous ration stance	Graphical Log	p le	ple Type	(foot 0. 30" fall namer	Density Per ic foot	sture tent cent Meight	fied ssifi- ion	BORING TYPE	CME 550 All Terraine 4-1/4" ID Hollow-Stem Auger 4270 + /-> USGS
Depth in Feet	C C	Gra	Sam	Sam	Blows/ 140 lt free-t	Dry 105 cub		COSC a -o - a -	REMARKS	VISUAL CLASSIFICATION
0								CL	dry	SAND AND SILTY CLAY; fine sand; no topsoil; brown
									moist	grades to gray
5				D	6	88	30.9	CL/ ML		grades to layered silty clay to fine sandy silt, gray to light gray, seams to 1/4" thick
10			=	D	29		6.1	SC/ SM	dense slightly moist -200 = 14 % dry	CLAYEY TO SILTY SAND; fine to medium sand; thin clay and silt layers; gray
15										grades to silty fine to medium sand; brown
20										
			=	D	29		16.7		-200 = 17%	Thin silty clay layers grading to fine sandy silt and clay
25										
The second secon	DEPTH 25.1	GROUNDW/ HOUR		DA	TE A S U T D C	- Auger - 2" 0. - 3" 0. - 3" 0. - 3 1/4 - Calif	cutting D. 1.38" D. 2.42" D. thip-	LE TYPE s 1.D. tu 1.D. tu walled S 2.42" 1.D blit Spoo	be sample. be sample. helby tube. . tube sample. n Sample	FIGURE A-1a Earth & Environmental

PROЛ		West D	esei	- 1 1,	New LA near Cli	RW Em ve, Utal 8/30	3	nt	LOG	OF TEST BORING NO. B-1
	tinuous stration 8-6 ()	Graphical Log	01	ole Type	har bar bar	C foot ty	sture tent Gent Weight	fied ssifi- ion	BORING TYPE	CME 550 All Terraine 4-1/4" 1D Hollow-Stem Auger 4270 + /-' USGS
Depth in Feet	Cont Rent SRee	Graf Log	Sample	Samp	B-00 free drop	n n n n n n n n n n n n n n n n n n n		C Dui	REMARKS	VISUAL CLASSIFICATION
= 25 30			*	D	6				very moist to	
			= =		-				saturated soft	
35			=		25	93	30.2			SANDY SILT AND CLAY: layered clay and fine sandy silt to clay; sand laminations; 1/4" to 2" layers; light gray grades with occasional fine to medium sand and silt layers
45			=	D	23	99	26.1	CL	medium stiff to stiff	grades to layered fine sandy clay and sand to clay with some fine sand; brown
50	DEPT4 25.1		ATER	DA	U T D	- 3" 0. - 3" 0. - 3 1/4	cutting D. 1.38" D. 2.42" D. thin- " O.D. 2	I.D. tu walled Si	be sample. be sample. helby tube. h tube sample. h Sample	FIGURE A-11 Earth & Environmental

PROJE		West D	esei	-] rt, 1	New LA n <u>ear Cl</u> i	ve, Uta	h	ent	LOG	OF TEST BORING NO. B-1
Depth Feet Bold	Continuous Penetration 3Resistance	Pil2-0052	Q	ample Type	Blows/foot 140 lb. 30" free-fall drop hammer	Dry Density Ibs. Perity cubic foot	Moisture Percent Dry Weight	ified if tion tion	RIG TYPE BORING TYPE SURFACE ELEV DATUM REMARKS	CME 550 All Terraine 4-1/4" ID Hollow-Stem Auger 4270 + /-? USGS VISUAL CLASSIFICATION
50			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ML/ SM	saturated	SILT AND SAND; layered silty fine to medium sand to fine silty sand; 1/2" to 4" layers? brown grades to layered fine sand and clayey silt to silty clay with silty fine sand; brown
60				D		92	28.6	ML/ CL		SILTY CLAY AND SILT; medium; moist; brown
65			=	D	25		28.0	SM/	medium dense	SILT AND SAND; layered fine sandy silt to silty fine to medium sand with trace coarse sand; brown
75	DEPTH 25.1	GROUNDW	ATER	DA	S U T D	- 2" 0. - 3" 0. - 3" 0. - 3 1/4	cutting D. 1.38" D. 2.42" D. thin- " 0.D. 2	I.D. tu 1.D. tu walled S	be sample. be sample. helby tube. . tube sample. n Sample	FIGURE A-1 Earth & Environmental

PROJI Job n			eser		New LAI near Cliv _ DATE		1	ent	LOG	OF TEST BORING NO. B-1
	at ion tarce	Graphica I Log	a		us/foot lb. 30" e-fall o hammer	Dens ity c foot	sture tent cent Meight	fied ssifi- ion	BORING TYPE	CME 550 All Terraine 4-1/4" ID Hollow-Stem Auger 4270 +/-' USGS
Depth in Feet	Cont Dent 3Res	Gra Log	Sample	Samp	д 1 4 С 0 е 0 0	Prd Sd Cubs		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REMARKS	VISUAL CLASSIFICATION
80			1,	D	4		16.7		disturbed	SILTY SAND; layered silty fine sand to silty fine to coarse sand with occasional fine sandy silt and clay layers; density increases with depth; gray
85									(loose)	
90			=	D	51		23.1		medium dense to dense	
95										Stopped drilling at 93.0'. Stopped sampling at 94.5'. The discussion in the text under the section titled, SUBSURFACE CONDITIONS, is necessary to a proper understanding of the nature of the subsurface materials.
100	DEPTH 25.1	GROUNDW	ATER	DA	T	- 3" 0.	cutting D. 1.38" D. 2.42" D. thin-	walled S	be sample. be sample. helby tube. . tube sample. n Sample	FIGURE A-1d Earth & Environmental

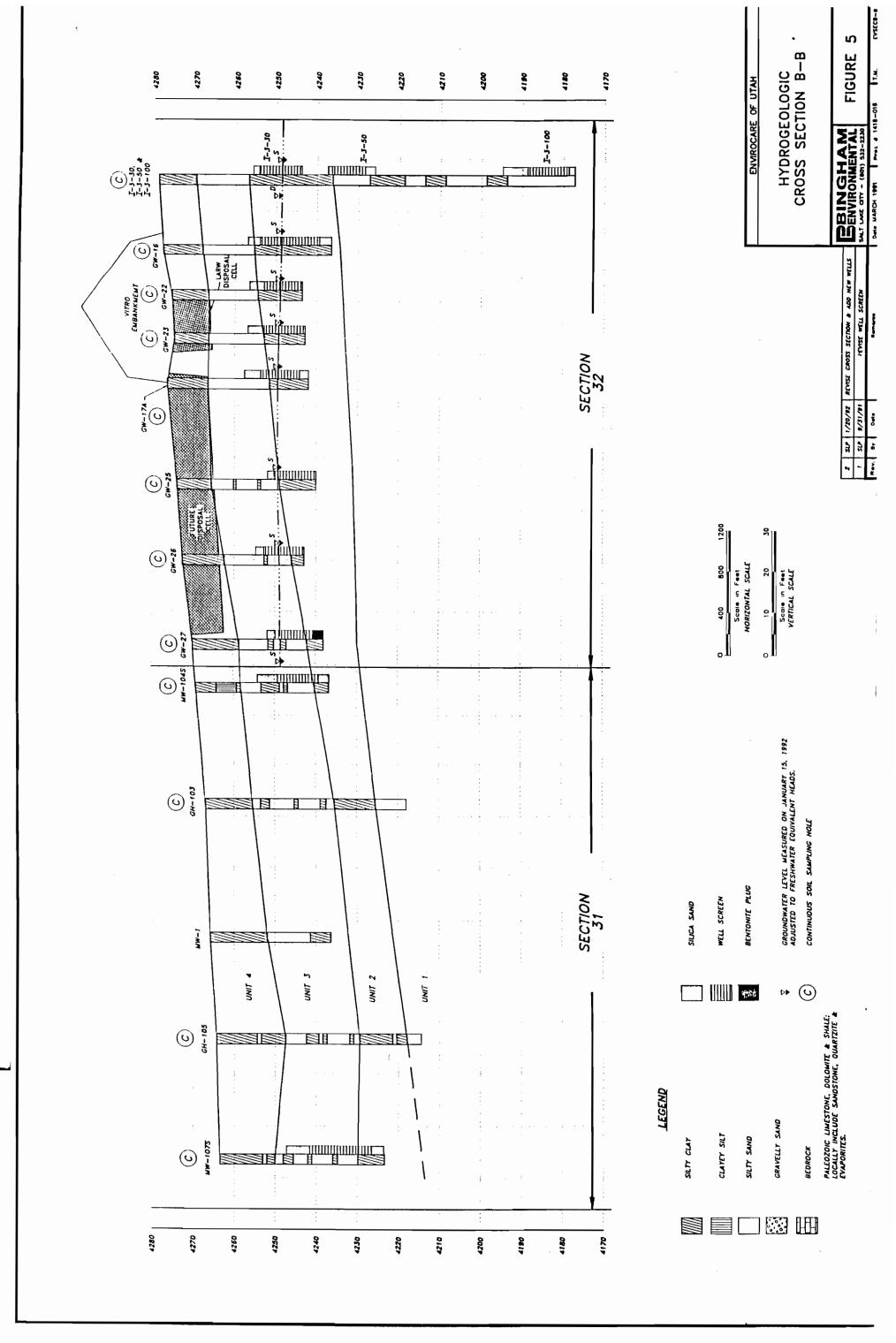
UNIFIED SOIL CLASSIFICATION SYSTEM

Soils are visually classified for engineering purposes by the Unified Soil Classification System. Grain-size analyses and Atterberg Limits tests often are performed on selected samples to aid in classification. The classification system is briefly outlined on this chart. Graphic symbols are used on boring logs presented in this report. For a more detailed description of the system, see "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)" ASTM Designation: 2488-84 and "Standard Test Method for Classification of Soils for Engineering Purposes" ASTM Designation: 2487-85.

	N	AJOR DIVISIONS		GRAPHIC SYMBOL	GROUP SYMBOL		TYPICAL NAMES
	arse sieve)	CLEAN GF			GW	Well grade mixtures,	ed gravels, gravel-sand or sand-gravel-cobble mixtures
(eve)	VELS ss of coarse ss No. 4 siev	(Less than 5% passo	es No. 200 sieve)	111	GP		ded gravels, gravel-sand mix- and-gravel-cobble mixtures
GRAINED SOILS passes No. 200 sleve)	GRAVEL % or less of n passes N	GRAVELS WITH FINES	Limits plot below "A" line & hatched zone on plasticity chart		GM	Silty grave	ols, gravel-sand-silt mixtures
AINED ses No	(50% fraction p	(More than 12% passes No. 200 sieve)	Limits plot above "A" line & hatched zone on plasticity chart		GC	Clayey gra	avels, gravel-sand-clay mixtures
COARSE-GRAINED SOILS Less than 50% passes No. 200 s	coarse 4 sieve)	CLEAN S			sw	Well grade	od sands, gravelly sands
COAR than 5	SANDS or more of coarse passes No. 4 siev	(Less than 5% passe	s No. 200 sieve)		SP	Poorly grad	ded sands, gravelly sands
Less	SAI 6 or mo n passe	SANDS WITH FINES	Limits plot below "A" line & hatched zone on plasticity chart		SM	Silty sands	s, sand-silt mixtures
	(50% fraction	(More than 12% passes No. 200 sieve)	Limits plot above *A* line & hatched zone on plasticity chart		SC	Clayey sar	nds, sand-clay mixtures
ieve)	SILTS Unite plot below "A" Ine & hetched zone on plaetdry chart	SILTS OF LOW F (Liquid Limit les			ML	Inorganic s medium pla	silts, clayey silts of low to asticity
SOILS 40.200 s	Limite pio line & her on plast	SILTS OF HIGH F			мн		ilts, micaceous or ous silty soils, elastic silts
INED S	CLAYS Limits plot above 'A' fire & hatched zone on plastday chart	CLAYS OF LOW (Liquid Limit les			CL		lays of low to medium ravelly, sandy, and sity clays
FINE-GRAINED or more passes N	Limite pic	CLAYS OF HIGH (Liquid Limit 50					lays of high plasticity, fat ly clays of high plasticity
FINE-GRAINED SOILS (50% or more passes No. 200 sieve)	ORGANIC SILTS AND CLAYS	ORGANIC SILTS AND PLASTICITY (Liquid Li					is and clays of low to medium andy organic silts and clays
(50	ORG SILTS SILTS	ORGANIC SILTS AND PLASTICITY (Liquid L					s and clays of high andy organic silts and clays
	ANIC	PRIMARILY ORGA (dark in color and c			PT	Peat	
		NOTE: Coarse-grained soils with with limits plotting in the hi PLASTICITY CHAI	alched zone on the plasticity		dual classific	ations.	F SOIL FRACTIONS
	60 ·A· UN			r			PARTICLE SIZE RANGE
×	PI-4	45LL525.5	- INE	F	Boulders		Above 12 in.
PLASTICITY INDEX	10 VIN	IE 1	JH . A' LINE		Cobbles Gravel		12 in. to 3 in. 3 in. to No. 4 sieve
× ≥	P1=0	16; PI 57 (1-6)			Coarse g		3 in. to 3/4 in.
ICIT	30-				Fine grav	vel	3/4 in. to No. 4 sieve No. 4 to No. 200 sieve
AST	20				Coarse a	and	No. 4 to No. 10 sieve
2					Medium		No. 10 to No. 40 sieve
		ML or OL			Fine san Fines (silt	d and clay)	No. 40 to No. 200 sieve Less than No. 200 sieve
	0 10	20 30 40 50 60 LIQUID LIMIT	70 80 90 100	L			
		<u>encons enint</u>					

Energy*Solutions*, Inc. Geotechnical Update Report Job No. 10-817-05290 Class A West Embankment February 15, 2011

Table 3.1 – Summary of Engineering Properties in Slope Stability Analy	sis
(ref AMEC 12/13/05)	

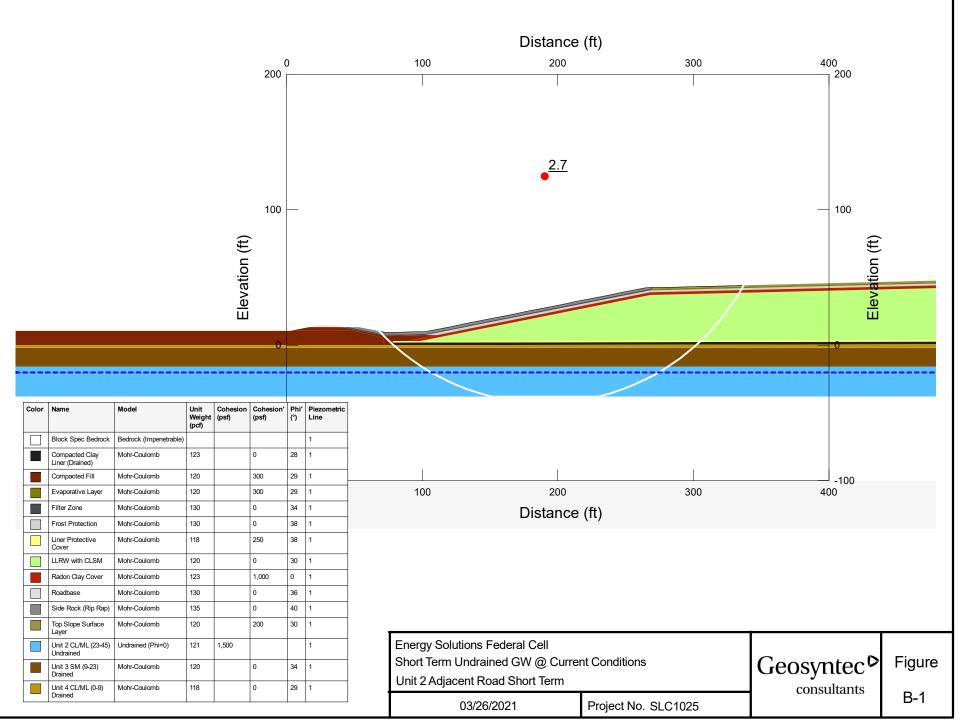

Material / Soil Units	Unit Weight, (pcf)	Angle of Internal Friction, (degrees)	Cohesion Intercept, (psf)	Basis / Reference Source
		LARW Embank	ment Properties	
Rip Rap (Cover)	135	40	0	Appendix B-2, Table B
Clay Cover	123	0	1000	AMEC 1999a, Section 3.2.7
Protective Soil Layer (Debris Free Soil) – silty sand	117.5	38	250	AMEC 1999b ⁸ , Figure A-7
Compressible Debris	101	18	130	AMEC 1999b, Figure 9
CLSM	120	0	15200* (equal to 100 psi)	Specification calls for minimum of 150 psi
Clay Liner	123	0 (28)	1000 (100)	Appendix B-2, Table B (AMEC 5/25/99, Figure A-6)
	En	nbankment Fou	ndation Properti	es
		Drained / Undrained	Drained / Undrained	
Unit 4- Upper Clays	118	29/0	0 / 2000	CPT correlations Appendix B-1 (or AMEC 2005, App B-1) and AMEC 1999a
Unit 3 - Silty Sands	120	34	0	CPT correlations Appendix B-1 (or AMEC 2005, App B-1) and AMEC 1999a
Unit 2 - Clays and Silts	121	29 / 0	1000 / 2000	CPT correlations Appendix B-1 (or AMEC 2005, App B-1) and AMEC 1999a
Unit 1 - Interbedded Sand, Silt and Clay	120	29	0	CPT correlations Appendix B-1 (or AMEC 2005, App B-1) and AMEC 1999a

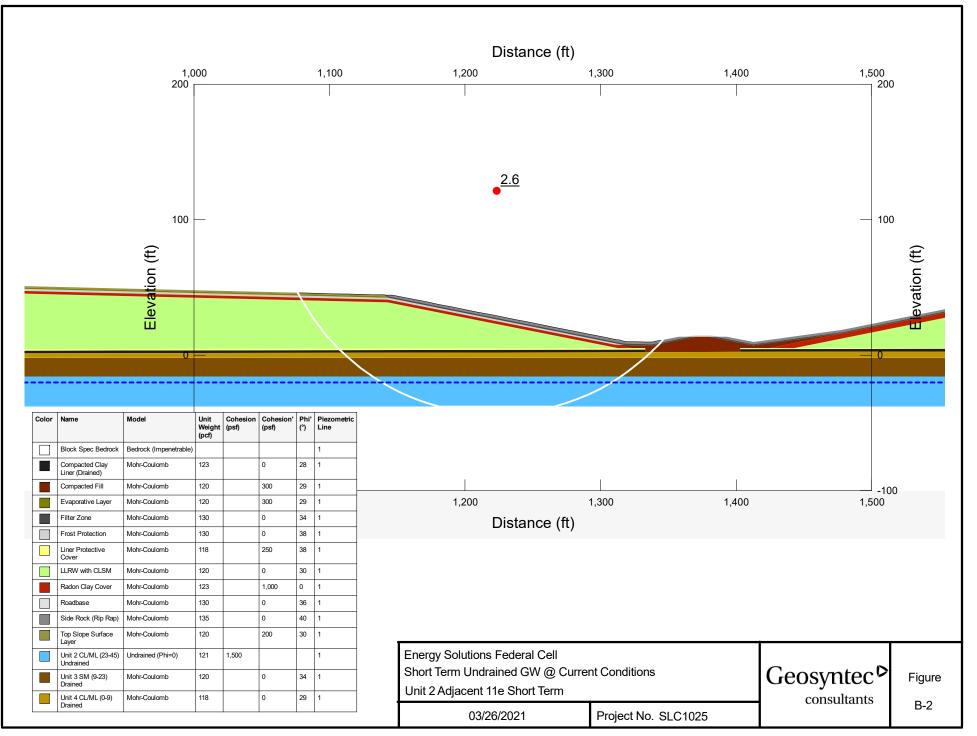
This strength exceeds the strengths of the other materials by a large margin.

8

*

AMEC (formerly AGRA) (1999b), Task 2 -Summary of Field Strength Tests, Clive Disposal Facility, 75 Miles West of Salt Lake City, Clive, Utah, AGRA Job No. 8-817-002103, dated June 28, 1999.




۱[°] .

ATTACHMENT B

P:/PRJ\SDWP\Current Projects\SLC Federal Cell Clive Facility\Ergineering Evaluations and Calcs\SlopeMFederal Cell simplified to critical sections gaz

Distance 200 0 100 300 400 205 205 185 185 <u>3.4</u> 165 165 145 145 125 125 105 105 Elevation (ft) 85 85 _ levation 65 65 Πī 45 25 25 5 -15 -15 -35 -35 -55 -55 -75 -75 200 Cohesion' Phi' Piezometric (psf) (°) Line 0 100 300 400 Model Unit Weight (pcf) Color Name Distance (ft) Block Spec Bedrock Bedrock (Impenetrable) Compacted Clay Liner (Drained) Mohr-Coulomb 123 28 0 Compacted Fill Mohr-Coulomb 120 300 29 Mohr-Coulomb 120 300 29 Evaporative Layer

 Energy Solutions Federal Cell
 Figure

 Long Term Static Drained GW @ Current Conditions
 Geosyntec
 Figure

 Clay Liner Adjacent Road
 consultants
 B-3

Filter Zone

Frost Protection

Liner Protective Cover

LLRW with CLSM

Radon Clay Cover

Side Rock (Rip

Top Slope Surface

Roadbase

Rap)

Layer

Mohr-Coulomb

Mohr-Coulomb

Mohr-Coulomb 118

Mohr-Coulomb 120

Mohr-Coulomb 123

Mohr-Coulomb 130

Mohr-Coulomb 135

Mohr-Coulomb 120

130 0

130 0

250

0

0

0

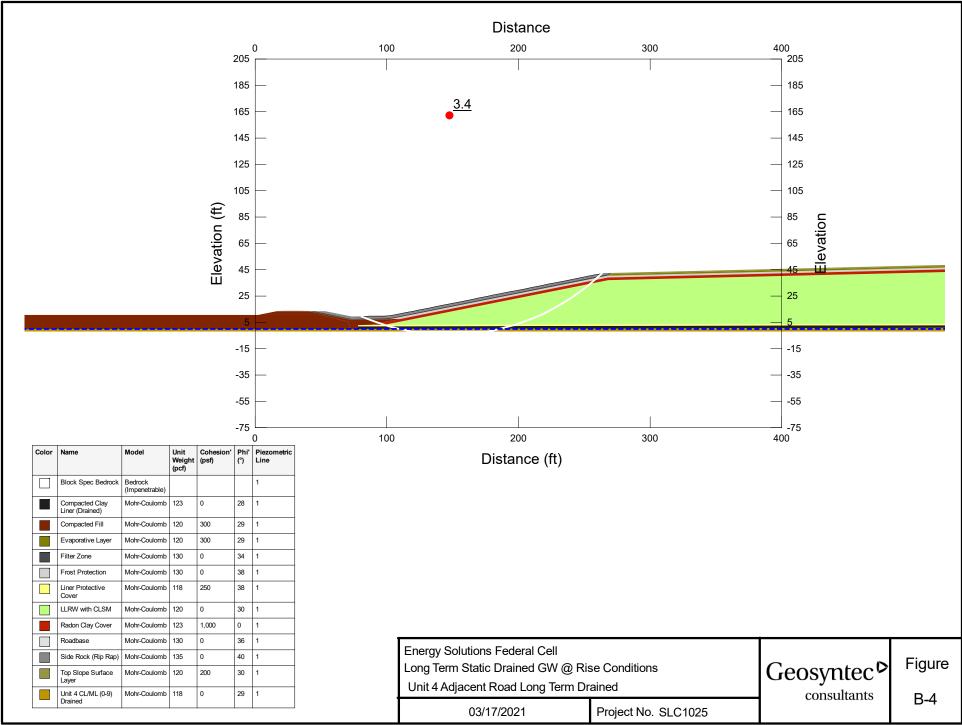
200

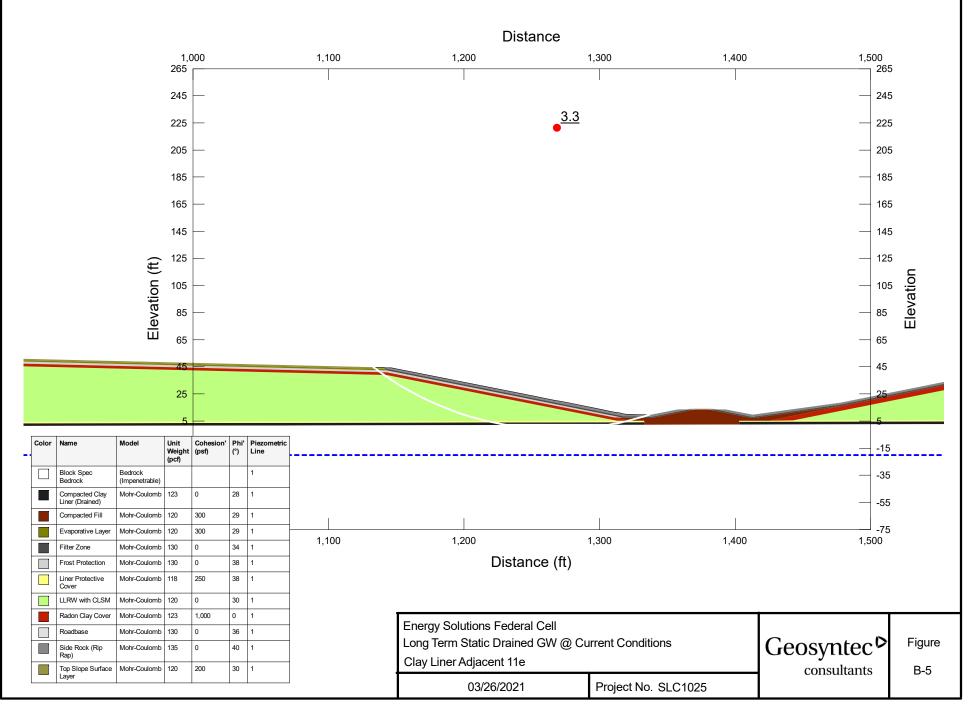
1,000

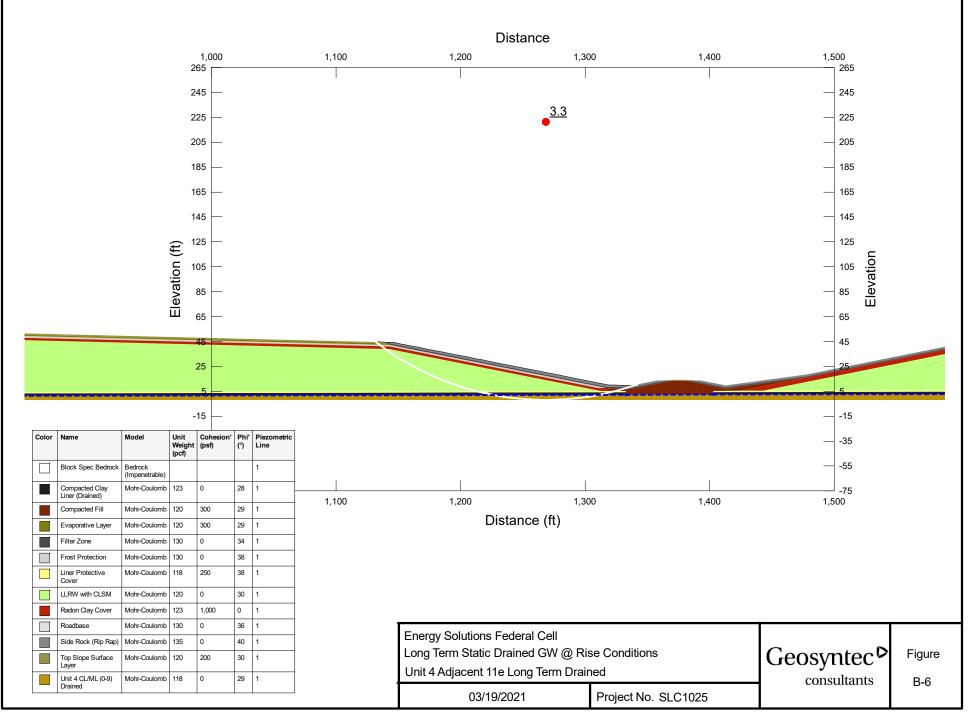
34

38

38

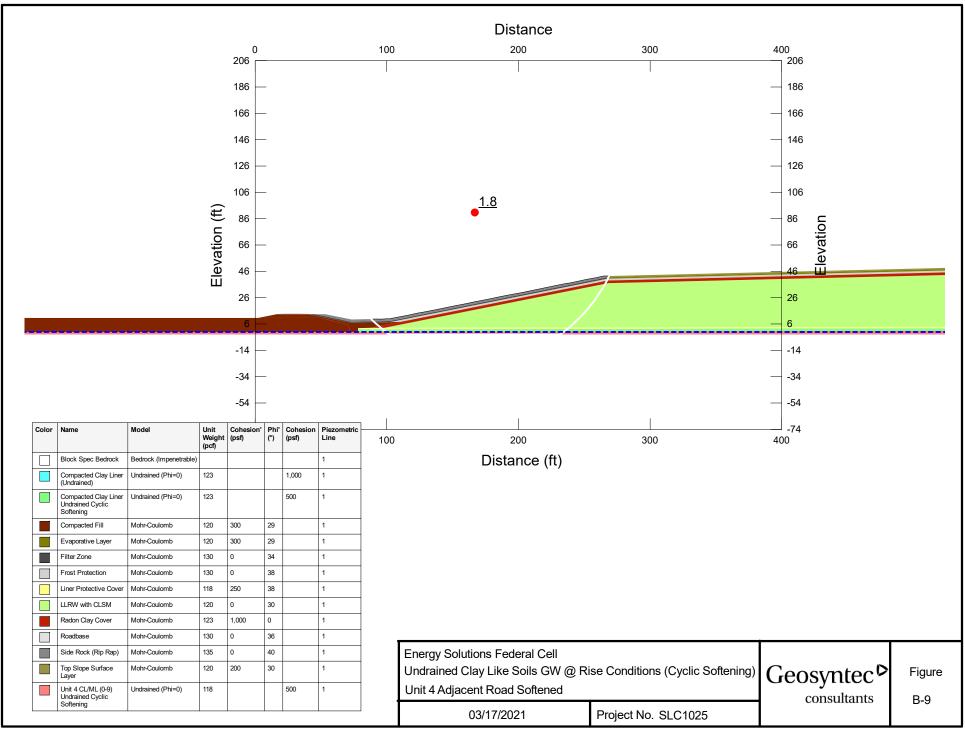

30

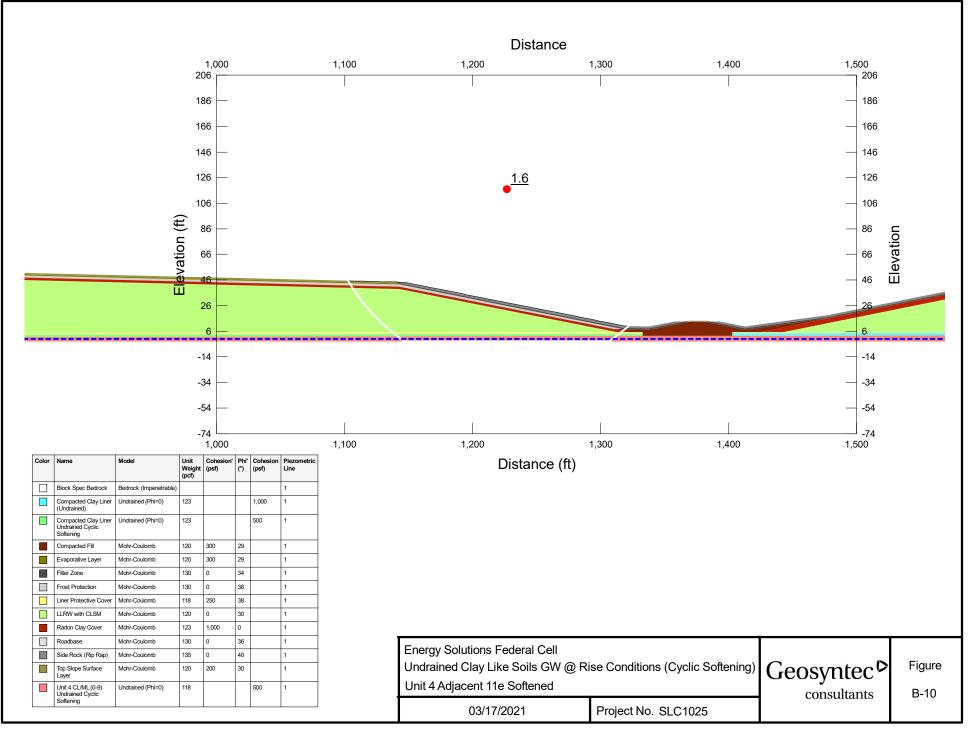

0

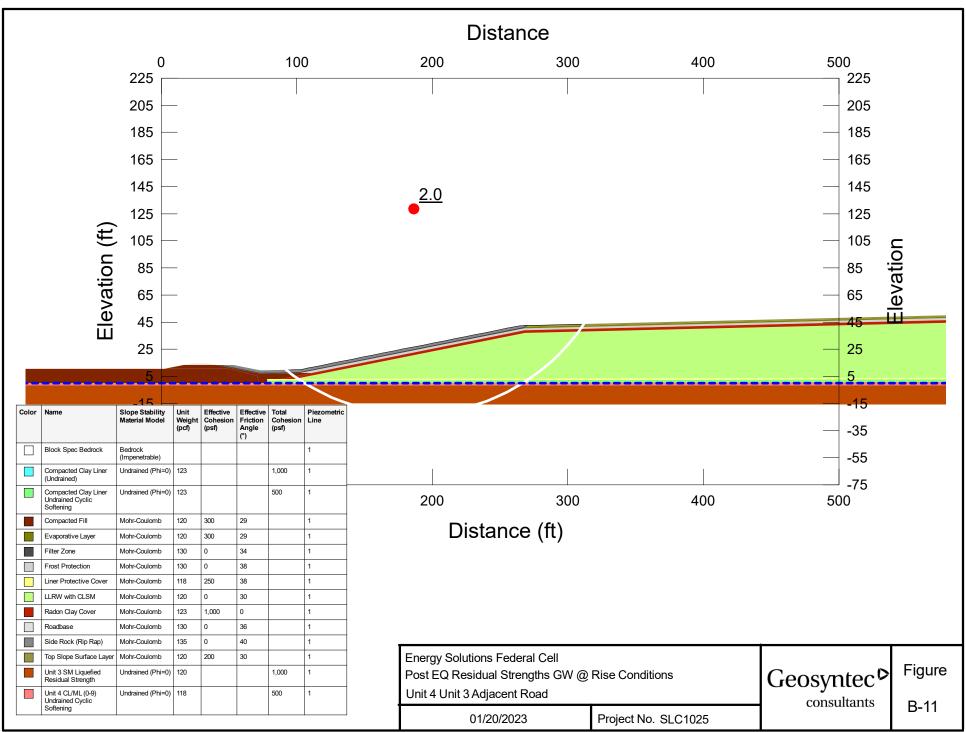

36

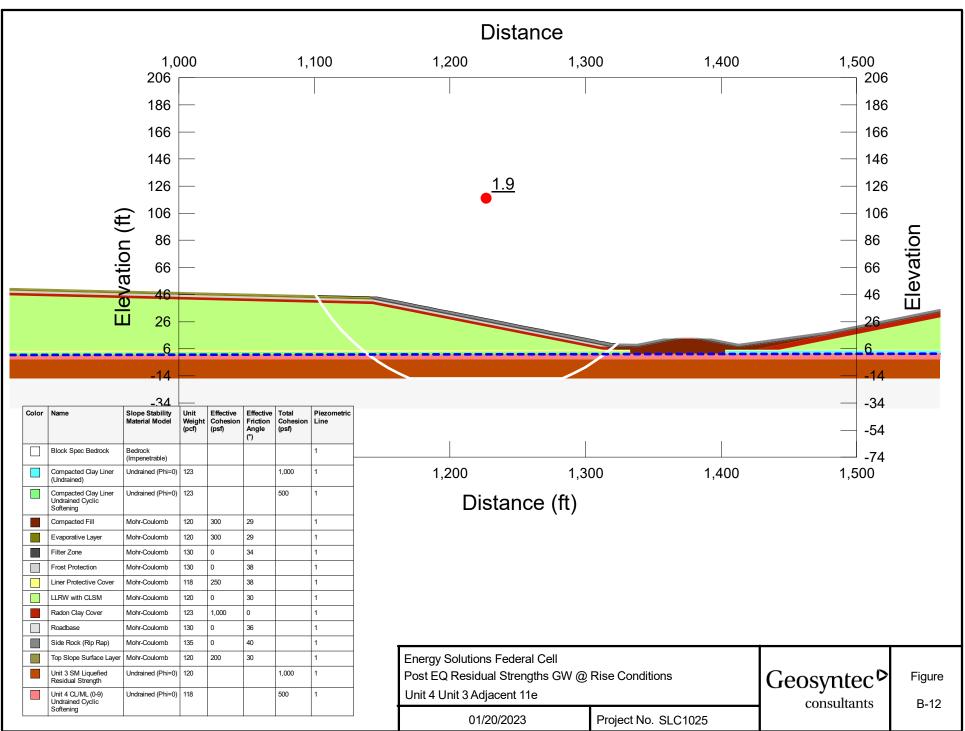
40 1

30

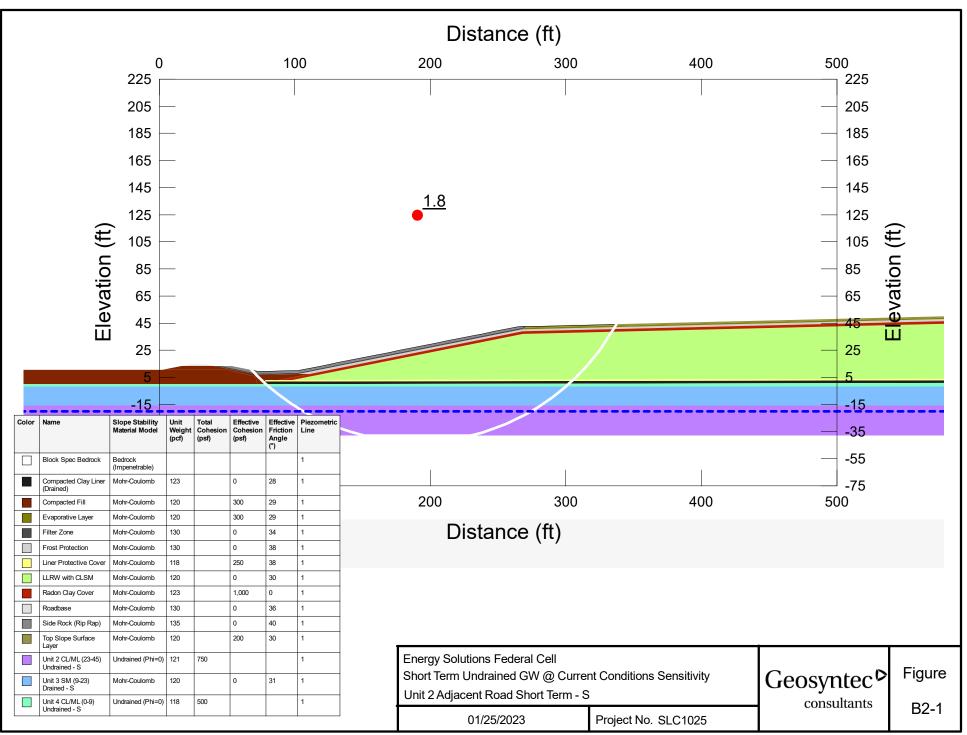


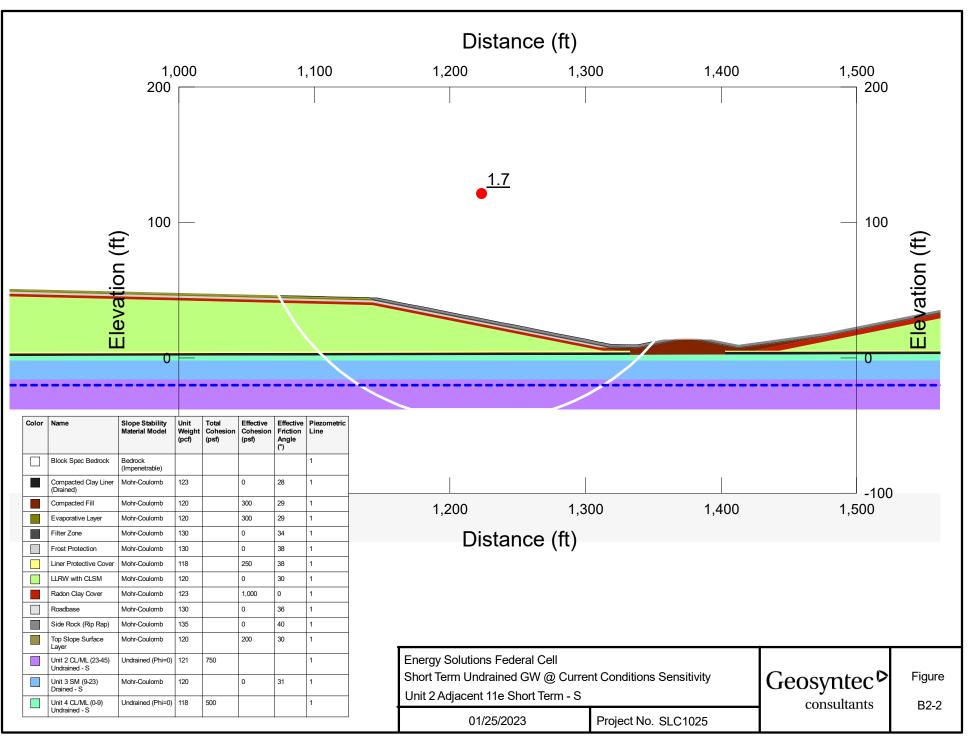


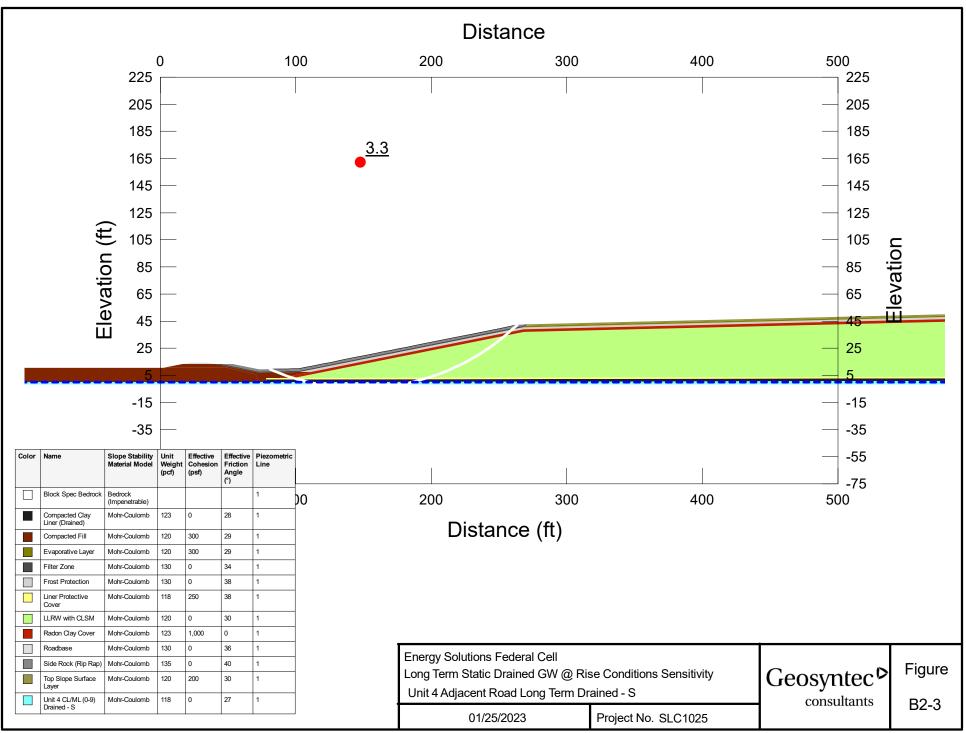


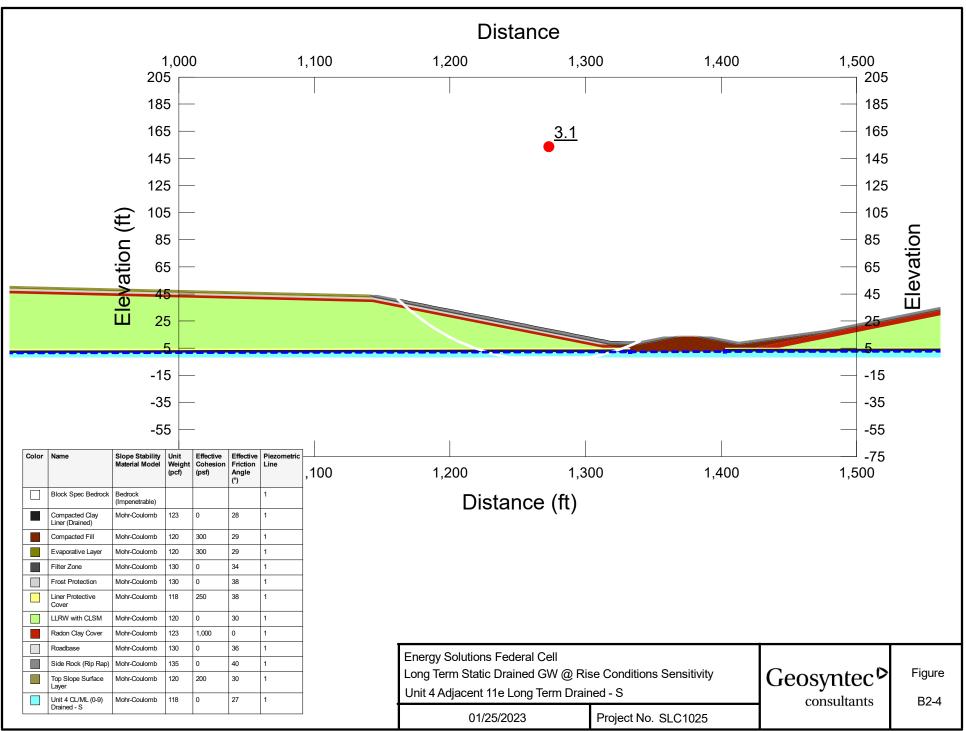

Distance 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 150 150 <u>1.3</u> 100 100 evation (ft) 50 Elevation -50 -50 -100 -100 50 150 200 250 300 350 400 450 500 550 600 650 700 750 100 Distance (ft) Unit Weight (pcf) Cohesion' Phi' Cohesion (psf) (°) (psf) Color Name Model Piezometric Line Block Spec Bedrock Bedrock (Impenetrable) Compacted Clay Liner (Undrained) 123 1,000 Undrained (Phi=0) 120 29 Compacted Fill Mohr-Coulomb 300 120 300 29 Evaporative Layer Mohr-Coulomb Filter Zone 130 34 Mohr-Coulomb 0 130 38 Frost Protection Mohr-Coulomb C Liner Protective Cover Mohr-Coulomb 118 250 38 LLRW with CLSM Mohr-Coulomb 120 l c 30 123 Radon Clay Cover Mohr-Coulomb 1,000 0 130 36 Energy Solutions Federal Cell Roadbase Mohr-Coulomb C Side Rock (Rip Rap) Mohr-Coulomb 135 40 0 Pseudostatic Undrained GW @ Rise Conditions Geosyntec[•] Figure Top Slope Surface Layer 120 30 Mohr-Coulomb 200 Unit 4 Adjacent Road Seismic consultants Unit 4 CL/ML (0-9) Undrained 1,000 Undrained (Phi=0) 118 B-7 Project No. SLC1025 03/17/2021

Distance 750 800 850 900 950 1,000 1,050 1,100 1,150 1,200 1,250 1,300 1,350 1,400 1,450 150 150 <u>1.3</u> 100 100 evation (ft) 50 vation -50 -50 -100 -100 850 900 950 1,000 1,050 1,100 1,150 1,200 1,250 1,300 1,350 1,400 750 800 1,450 Distance (ft) Cohesion' Phi' Cohesion (psf) (°) (psf) Unit Weight (pcf) Color Name Model Piezometric Line Block Spec Bedrock Bedrock (Impenetrable) 123 1,000 Compacted Clay Liner (Undrained) Undrained (Phi=0) 120 29 Compacted Fill Mohr-Coulomb 300 120 300 29 Evaporative Layer Mohr-Coulomb Filter Zone 130 34 Mohr-Coulomb 0 130 38 Frost Protection Mohr-Coulomb C Liner Protective Cover Mohr-Coulomb 118 250 38 LLRW with CLSM Mohr-Coulomb 120 l c 30 123 Radon Clay Cover Mohr-Coulomb 1,000 0 130 36 Energy Solutions Federal Cell Roadbase Mohr-Coulomb C Side Rock (Rip Rap) Mohr-Coulomb 135 40 Figure 0 Geosyntec[•] Pseudostatic Undrained GW @ Rise Conditions Top Slope Surface Layer 120 30 Mohr-Coulomb 200 Unit 4 Adjacent 11e Seismic consultants Unit 4 CL/ML (0-9) Undrained 1,000 Undrained (Phi=0) 118 B-8 Project No. SLC1025 03/17/2021

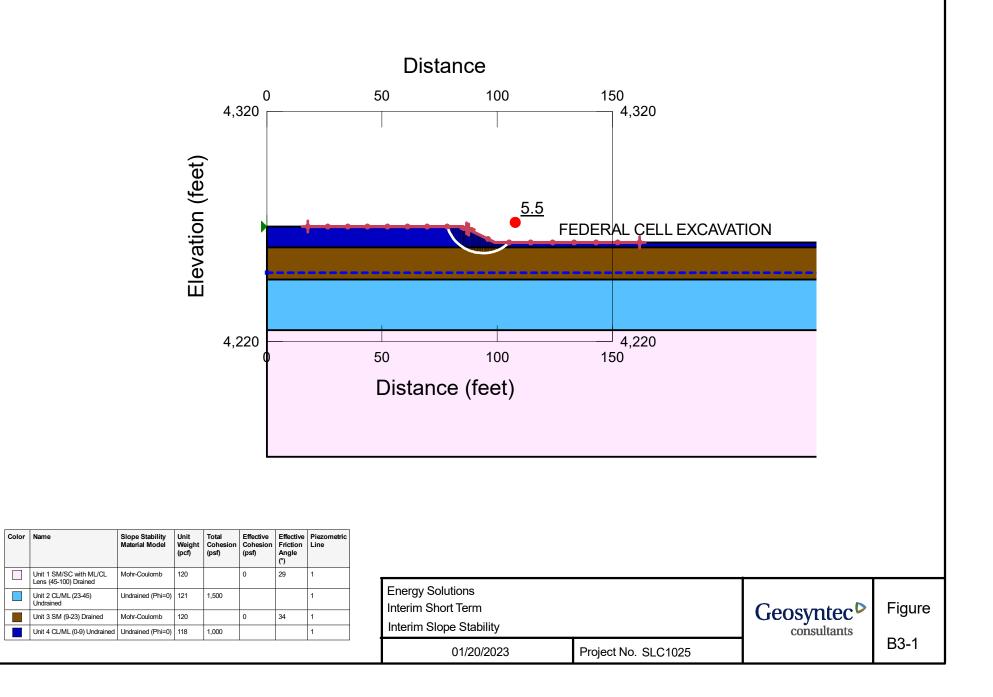




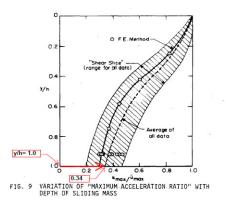




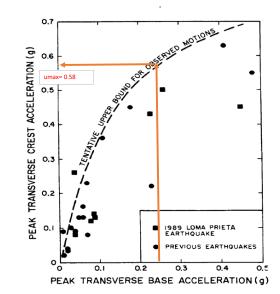
ATTACHMENT B2



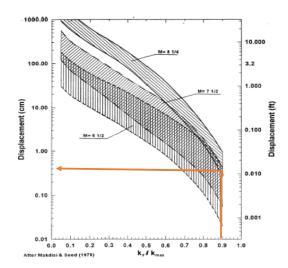
ATTACHMENT B3



ATTACHMENT C


SLC1025 Earthquake Deformation Analysis Makdisi & Seed Simplified Method

		Case/Description	k _y	ü _{max}	y (ft)	H (ft)	y/H	k _{max} /ü _{max}	k _{max}	k _y /k _{max}	Deformation (cm)	Deformation (mm)	Allowable Deformation (mm)
FS	1	Critical Section Failure Through Unit 4, entire slope face (y/h =1), adjacent 11(e)	0.180	0.580	52.0	52.0	1.0	0.34	0.20	0.91	0.4	4	150-300
Mw [.]	7.3												


Mw: 7.3 PHGA (g): 0.24

Reference: Makdisi and Seed [1978]. "Simplified Procedure for Estimating Dam and Embankment Earthquake Induced Deformation." *Journal of the Geotechnical Engineering Division*, ASCE, Vol. 104, No. GT7, pp 849-867.

As a comparison to the above calculated values, the seismic design criteria and performance standards for closure of the Operating Industries, Inc. (OII) landfill provides an example of criteria based on allowable deformations. The OII landfill criteria allow 150 mm (6-inches) of soil deformation within its cover system (Kavazanjian et al. 1998). Other published records of performance criteria for municipal landfills generally indicate an allowable deformation in the cover system to be on the order of 150 to 300 mm (6 to 12-inches, Kavazanjian 1998). In current U.S. practice, the 150 to 300 mm of displacement is commonly accepted as the allowable calculated seismic displacement for a geosynthetic cover system (Seed and Bonaparte, 1992.

ATTACHMENT D

								SETTLEM	IENT ANALI	/SES									
Site: Location:		LIVE FEDERA	IL CELL							Project No .:		SLC1025							
Client: Prepared by	E	S A.Downing								Date: Reviewed by:		17-Mar-21 B.Baturay							
	Total Settler Primary Con	nent s _t = Imn solidation s _c	eo) log[ơ'c/ơ' _{vo}] where C _r =rec	+ C _c H _{o/} 1+eo			condary Settl	ement (s _s)											
			$H_o = in$ $\sigma'c = e$ $\sigma'_{vo} = i$ $\Delta \sigma_v = e$	itial soil layer ffective preco nitial effective	thickness nsolidation pres		۲ σ' _{νο}												
	Secondary S																		
		s = C _{αc} H ₁₀₀ I	where $C_{\alpha z} = s H_{o} = th$ $H_{c} = th$ t2 = time	ickness of cor	npressible layer lary settlements are	calculated (50)0 years for desig	gn life, assume sett		t is minimul due to log s 4 clay layers (AME		creep)							
	<u>Elastic (Imm</u> Z	<u>ediate)</u> Ze=∆σ/Ms *ŀ	wher Z =elasti Ho= initial thic Δσ= change in str	kness of soil la ress in layer		with E and	v of the insitu	soil											
CALCULATIO	ONS		-								1 I II.	-							
<u>New Load f</u>	or Foundatio	Unit 4		Depth (FT BGS)	Height o Average Unit We	light of Cove Δσ _v fro	over Materials= r and Waste= om Loading = B = L = 4 Unit Weight	52.5 ft 120.0 pc 6300.0 ps 1225.0 ft 1920.0 ft 118.0 pc	cf sf	at the tallest point, Based on Cell Limits	Including cove	f							
		Unit 3 SM Unit 2 CL/ML Unit 1		16 38		Unit Unit Unit w	3 Unit Weight 2 Unit Weight 1 Unit Weight weight of water pth to Water =	120.0 pc 121.0 pc 120.0 pc 62.4 pc 18.0 ft	:f :f :f		ent grade, appro	oximately 7 fee	t of upper ma	terial to be removed	= 16 feet l	bgs for modelin	9		
,	/	SM	,	100		Unit 4 C _c = Unit 4 Cr = Unit 4 C _{as} =	0.02	Unit 4 eo = Unit 2 eo = Unit 4 OCR =	1.1 1.2 5	Unit 3 Ms = Unit 1 Ms= $t_1 (t_{100} \text{ for primary} consolidation)$ t2 (compliance	311,040 531556 1								
						Unit 2 Cc= Unit 2 Cr = Unit 2 Cαε =	0.2 0.025 0.00450	Unit 2 OCR =	1.5	period of 10,000 years f)	10000								
Depth (ft)	Depth of Midot (ft)	σ _{vo} (psf)	u (psf)	σ' _{vn} (psf)	Effective Mat Area (sf)	$\Delta \sigma_v$ (psf)	σ' _{vo} +Δσ _v (psf)	OCR	σ'c (psf)	H _o (ft) d	′ _{vn} +Δσ _v < σ'c	Second	_{tion} (ft)	H ₁₀₀		S _{secondary} (f	a s	c+s (ft)	Ze (ft)
0.0		0 _{v0} (por)	u 7	0 vo (p01)	()	6300.0				11 ₀ (ii) 0	vo 110, 100	Consolida	bon (**)		1	O secondary (<u>, </u>	()	.,
1.0	0.5	59.0		59.0	2353572.8	6295.8		5.0	295.0	1.0	no		0.160		0.840		0.013	0.173	
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 14.5	177.0 297.0 417.0 537.0 657.0 777.0 897.0 1017.0 1137.0 1257.0 1377.0 1497.0 1617.0 1737.0 1857.0		177.0 297.0 417.0 537.0 657.0 777.0 897.0 1017.0 1257.0 1377.0 1497.0 1617.0 1737.0 1497.0 1637.0	2356719.8 2359868.8 2363019.8 2366172.8 2366172.8 237248.4 2375643.8 2375643.8 237804.8 2385132.8 2385132.8 2385132.8 239468.8 239468.8 2394639.8 2394639.8 2394639.8	6287.4 6279.0 6270.6 6262.3 6262.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6179.6 6171.5	6576.0 6687.6 6799.3 6910.9 7022.6 7134.3 7246.0 7357.7 7469.5 7581.2 7693.0 7804.8 7916.6 8028.5	5.0	885.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no		0.104		0.896		0.014	0.118	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
17.0 18.0 20.0 21.0 22.0 24.0 25.0 27.0 27.0 27.0 28.0 27.0 30.0 31.0 31.0 33.0 33.0 33.0 33.0 35.0 35.0 36.0 37.0 28.0 29.0 20.0 20.0 20.0 20.0 20.0 20.0 20	16.5 17.5 18.5 20.5 21.5 22.5 22.5 24.5 26.5 26.5 26.5 27.5 28.5 28.5 28.5 30.5 31.5 32.5 33.5 33.5 34.5 35.5 36.5 27.5	1978.0 2099.0 2220.0 2341.0 2462.0 2704.0 2825.0 2946.0 3067.0 3188.0 3309.0 3430.0 3551.0 3672.0 3793.0 3794.0 3793.0 3793.0 3794.0 3793.0 3794.0 3793.0 3794.0 3793.0 3794.0 3794.0 3793.0 3794.0 3793.0 3794.0 3794.0 3793.0 3794.0 3794.0 3794.0 3793.0 3794.0 3794.0 3794.0 3794.0 3793.0 3794.0 3794.0 3794.0 3794.0 3794.0 3794.0 3794.0 3793.0 3794.0 37	218.4 200.8 343.2 405.6 468.0 530.4 592.8 655.2 717.6 780.0 842.4 904.8 967.2 1029.6 1092.0 1154.4	1978.0 2099.0 2188.8 2247.4 2306.0 2364.6 2423.2 2481.8 2590.0 2657.6 2716.2 2774.8 2833.4 2895.0 2856.6 3009.2 2774.8 2895.0 2895.6 3006.7 8 3126.4	2404164.8 2407343.8 2410524.8 2413707.8 2416892.8 2422079.8 2422268.8 2422268.8 24226459.8 24226459.8 2432647.8 2432647.8 2432644.8 2432247.8 2442647.8 2442647.8 2452269.8 2455268.8 2455268.8 2455268.4 2455269.8 2455269.8 2455269.8 2455269.8 2456479.8 2456	6163.3 6155.2 6147.0 6138.9 6130.8 6122.8 6114.7 6106.7 6098.6 6098.6 6098.6 6098.6 6098.6 6082.6 6062.7 6058.8 6050.8 6042.9 6035.0 6027.1 6019.3 6011.4 6019.3 6011.4 6003.6 6021.6	8254.2 8335.8 8386.3 8436.4 8537.9 8588.5 8639.0 8689.6 8740.2 8790.9 8841.5 8599.0 8841.5 8592.2 8592.8 893.5 9044.2 9094.9 9145.7 9196.4 9247.2	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	2967.0 3148.5 3283.2 3371.1 34590.0 3546.9 3634.8 3722.7 3810.6 3898.5 3986.4 4074.3 4162.2 4250.1 4338.0 4425.9 4513.8 4601.7 4689.6 4777.5 4865.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no no no no no no no no no n		0.042 0.040 0.039 0.038 0.037 0.036 0.036 0.035 0.034 0.032 0.032 0.031 0.031 0.031 0.030 0.032 0.031 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.034 0.035 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.032		0.958 0.960 0.961 0.962 0.963 0.964 0.965 0.966 0.966 0.966 0.968 0.968 0.968 0.968 0.969 0.970 0.971 0.971 0.972 0.972 0.973 0.973		0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017	0.059 0.057 0.056 0.055 0.055 0.055 0.053 0.052 0.052 0.052 0.052 0.051 0.050 0.050 0.049 0.049 0.048 0.047 0.046 0.046 0.045	
38.0 39.0 40.0 41.0 43.0 44.0 45.0 46.0 47.0 48.0	37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5 47.5	4519.0 4639.0 4759.0 4879.0 5119.0 5239.0 5359.0 5359.0 5599.0 5719.0	1466.4	3302.2 3359.8 3417.4 3475.0 3532.6 3590.2 3647.8 3705.4 3763.0 3820.6 3878.2	2471343.8 2474564.8 2477787.8 2481012.8 2484239.8 2487468.8 2490699.8 2493932.8 2493932.8 2497167.8 2500404.8 2503643.8	5995.8 5988.0 5980.2 5972.4 5964.6 5956.9 5949.2 5941.5 5933.8 5926.1 5918.4	9347.8 9397.6 9447.4 9497.2 9547.1 9597.0 9646.9 9696.8 9746.7	1.5	4953.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no		0.027		0.973	C	.018	0.044	0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

					Effective Mat								1	1 1	_
	Depth of				Area	$\Delta \sigma_v$	$\sigma'_{vo} + \Delta \sigma_{v}$								
Depth (ft)	Midpt (ft)	σ_{vo} (psf)	u (psf)	σ' _{vo} (psf)	(sf)	(psf)	(psf)	OCR	σ'c (psf)	$H_o(ft) = \sigma'_{vo} + \Delta \sigma_v < \sigma'$	c S _{consolidation} (ft)	H ₁₀₀	S _{secondary} (ft)	S c+s (ft) Ze (
49.0	48.5	5839.0	1903.2	3935.8	2506884.8	5910.8	9846.6			1.0					0.011
50.0	49.5	5959.0	1965.6	3993.4	2510127.8	5903.1	9896.5			1.0					.011
51.0	50.5	6079.0	2028.0	4051.0	2513372.8	5895.5	9946.5			1.0					.011
52.0	51.5	6199.0	2090.4	4108.6	2516619.8	5887.9	9996.5			1.0					.011
53.0	52.5	6319.0	2152.8	4166.2	2519868.8	5880.3	10046.5			1.0					.011
54.0	53.5 54.5	6439.0	2215.2	4223.8	2523119.8	5872.7	10096.5 10146.6			1.0					0.011
55.0 56.0	54.5 55.5	6559.0 6679.0	2277.6 2340.0	4281.4 4339.0	2526372.8 2529627.8	5865.2 5857.6	10146.6			1.0 1.0					.011
57.0	56.5	6799.0	2402.4	4396.6	2532884.8	5850.1	10190.0			1.0					.011
58.0	57.5	6919.0	2464.8	4350.0	2536143.8	5842.6	10240.7			1.0					.011
59.0	58.5	7039.0	2527.2	4511.8	2539404.8	5835.1	10346.9			1.0					.011
60.0	59.5	7159.0	2589.6	4569.4	2542667.8	5827.6	10397.0			1.0					.011
61.0	60.5	7279.0	2652.0	4627.0	2545932.8	5820.1	10447.1			1.0					.011
62.0	61.5	7399.0	2714.4	4684.6	2549199.8	5812.6	10497.2			1.0					.011
63.0	62.5	7519.0	2776.8	4742.2	2552468.8	5805.2	10547.4			1.0				0	.011
64.0	63.5	7639.0	2839.2	4799.8	2555739.8	5797.8	10597.6			1.0				0	.011
65.0	64.5	7759.0	2901.6	4857.4	2559012.8	5790.4	10647.8			1.0					.011
66.0	65.5	7879.0	2964.0	4915.0	2562287.8	5783.0	10698.0			1.0					.011
67.0	66.5	7999.0	3026.4	4972.6	2565564.8	5775.6	10748.2			1.0					.011
68.0	67.5	8119.0	3088.8	5030.2	2568843.8	5768.2	10798.4			1.0					.011
69.0	68.5	8239.0	3151.2	5087.8	2572124.8	5760.8	10848.6			1.0					.011
70.0	69.5	8359.0	3213.6	5145.4	2575407.8	5753.5	10898.9			1.0					.011
71.0	70.5	8479.0	3276.0	5203.0	2578692.8	5746.2	10949.2			1.0					.011
72.0	71.5 72.5	8599.0	3338.4	5260.6	2581979.8	5738.9 5731.6	10999.5 11049.8			1.0 1.0					0.011
73.0 74.0	72.5	8719.0 8839.0	3400.8 3463.2	5318.2 5375.8	2585268.8 2588559.8	5724.3	111049.8			1.0					.011
74.0	73.5	8959.0	3525.6	5433.4	2591852.8	5717.0	11150.4			1.0					.011
76.0	75.5	9079.0	3588.0	5491.0	2595147.8	5709.7	11200.7			1.0					.011
77.0	76.5	9199.0	3650.4	5548.6	2598444.8	5702.5	11251.1			1.0					.011
78.0	77.5	9319.0	3712.8	5606.2	2601743.8	5695.3	11301.5			1.0					.011
79.0	78.5	9439.0	3775.2	5663.8	2605044.8	5688.0	11351.8			1.0					.011
80.0	79.5	9559.0	3837.6	5721.4	2608347.8	5680.8	11402.2			1.0					.011
81.0	80.5	9679.0	3900.0	5779.0	2611652.8	5673.6	11452.6			1.0				0	.011
82.0	81.5	9799.0	3962.4	5836.6	2614959.8	5666.5	11503.1			1.0					.011
83.0	82.5	9919.0	4024.8	5894.2	2618268.8	5659.3	11553.5			1.0					.011
84.0	83.5	10039.0	4087.2	5951.8	2621579.8	5652.2	11604.0			1.0					.011
85.0	84.5	10159.0	4149.6	6009.4	2624892.8	5645.0	11654.4			1.0					.011
86.0	85.5	10279.0	4212.0	6067.0	2628207.8	5637.9	11704.9			1.0					.011
87.0	86.5	10399.0	4274.4	6124.6	2631524.8	5630.8	11755.4			1.0					.011
88.0	87.5	10519.0	4336.8	6182.2	2634843.8	5623.7	11805.9			1.0					.011
89.0	88.5	10639.0	4399.2	6239.8	2638164.8	5616.6	11856.4			1.0					.011
90.0	89.5	10759.0	4461.6	6297.4	2641487.8	5609.6	11907.0			1.0					.011
91.0	90.5 91.5	10879.0	4524.0	6355.0	2644812.8	5602.5	11957.5			1.0					.011
92.0 93.0	91.5 92.5	10999.0 11119.0	4586.4 4648.8	6412.6 6470.2	2648139.8 2651468.8	5595.5 5588.4	12008.1 12058.6			1.0 1.0					0.011
53.0	52.5	11119.0	4040.0	0470.2	2001408.0	5566.4	12030.0			1.0				0	.011

ATTACHMENT D2

							s	ETTLEMENT A	NALYSES (I	MINIMUM)							
Site:		CLIVE FEDERAL	CELL							Project No.:		SLC1025					
ocation: Client: Prepared by	E	CLIVE UTAH ES M.Downing								Date: Reviewed by:		20-Jan-23 B.Baturay					
	Total Settler Primary Cor	up of three (3) or ment st = Immeor nsolidation st S = C, H _{o/} (1+eo) w	liate Settleme log[σ 'c/ σ ' _{vo}] here C _r = reco C _c = co H _o = ini	+ C _c H _o /1+eo ompression ind mpression ind itial soil layer th	$\log[(\sigma'_{vo} + \Delta \sigma_v)]$ dex lex	/ơ'c]		ement (s")									
			$\sigma'_{vo} = ir$	nitial effective			9 VD										
1	Secondary S	Settlement s.		al void ratio													
	5	$s_s = C_{\alpha \epsilon} H_{100} \log$	(t ₂ /t ₁)														
	<u>Elastic (Imm</u>	<u>nediate)</u> Ze=∆σ/Ms *Ho w H	$H_o = thi$ $t_2 = time$ $t_1 = t_{100}$ ther Z =elastic p= initial thick g= change in str	ickness of con for which second for primary co c settlement of kness of soil la ess in layer	nsolidation - 1	e calculated (500 year - estima	years for desi	gn life, assume set ious analyses o		at is minimul due to lo 4 clay layers (AN		of creep)					
CALCULATIC	ONS		r		l la indei a	f Waste and Cov	Mataialaa	52.5 ft		at the tallest poi	t including cou	or					
<u>New Load fo</u> Δσ _v	or Foundatio	Unit 4 CL/ML	L \	lepth (FT BGS)	Average Unit W	eight of Cover a ∆σ _v from	and Waste= Loading = B = L = Unit Weight	120.0 pt 6300.0 pt 1225.0 ft 1920.0 ft 103.0 pt	cf sf	Based on Cell Lin		CI					
	_/	Unit 3 SM Unit 2	1	16		Unit 2	Unit Weight Unit Weight Unit Weight	109.0 pc 100.0 pc 123.0 pc	f								
	/	CL/ML Unit 1		38		Unit we	ight of water h to Water =	62.4 pc 16.0 ft		gw @ 25' below c	irrent grade, app	roximately 7 feet of upper ma	terial to be removed =	16 feet b	ogs for modeling		
į	/	SM	/			Unit 4 C _c = Unit 4 Cr =	0.075 0.005	Unit 4 eo = Unit 2 eo =	1.12 1.275	Unit 3 Ms = Unit 1 Ms=	311,04 53155	D 6					
				100		Unit 4 C _{as} =	0.00258	Unit 4 OCR =	8	t ₁ (t ₁₀₀ for primary consolidation) t2 (compliance period of 10,000		1					
						Unit 2 Cc= Unit 2 Cr = Unit 2 Cαε =	0.069 0.010 0.00123	Unit 2 OCR =	1.6	years f)	1000						
Depth (ft)	Depth of Midpt (ft)	σ_{vo} (psf)	u (psf)	σ' _{vo} (psf)	Effective Mat Area (sf)	$\Delta\sigma_v$ (psf)	σ' _{vo} +Δσ _v (psf)	OCR	σ'c (psf)	H _o (ft)	σ' _{vo} +Δσ _v < σ'c	: S _{consolidation} (ft)	H ₁₀₀		S _{secondary} (ft)	S c+s (ft)	Ze (ft)
0.0	0.5	51.5		51.5	2353572.8	6300.0 6295.8	6347.3	8.0	412.0	1.0	no	0.044		0.956	0.010	0.054	
2.0	1.5	154.5		154.5	2356719.8	6287.4	6441.9	8.0	1236.0	1.0	no	0.027		0.973	0.010	0.034	
3.0	2.5 3.5	263.5 372.5		263.5 372.5	2359868.8 2363019.8	6279.0 6270.6	6542.5 6643.1 6743.8			1.0 1.0							0.02
4.0		481.5					6743.8										0.02
5.0 6.0 7.0	4.5 5.5 6.5	590.5 699.5		481.5 590.5 699.5	2366172.8 2369327.8 2372484.8	6262.3 6253.9 6245.6	6844.4 6945.1			1.0 1.0 1.0							0.02 0.02
5.0 6.0 7.0 8.0 9.0	5.5 6.5 7.5 8.5	699.5 808.5 917.5		590.5 699.5 808.5 917.5	2369327.8 2372484.8 2375643.8 2378804.8	6253.9 6245.6 6237.3 6229.0	6844.4 6945.1 7045.8 7146.5			1.0 1.0 1.0 1.0							0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 10.0 11.0	5.5 6.5 7.5 8.5 9.5 10.5	699.5 808.5 917.5 1026.5 1135.5		590.5 699.5 808.5 917.5 1026.5 1135.5	2369327.8 2372484.8 2375643.8 2378804.8 2381967.8 2385132.8	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0			1.0 1.0 1.0 1.0 1.0 1.0							0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 10.0	5.5 6.5 7.5 8.5 9.5	699.5 808.5 917.5 1026.5		590.5 699.5 808.5 917.5 1026.5	2369327.8 2372484.8 2375643.8 2378804.8 2381967.8	6253.9 6245.6 6237.3 6229.0 6220.7	6844.4 6945.1 7045.8 7146.5 7247.2			1.0 1.0 1.0 1.0 1.0							0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5	699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1680.5		590.5 699.5 808.5 917.5 1026.5 1244.5 1353.5 1462.5 1571.5 1680.5	2369327.8 2372484.8 2375643.8 2378804.8 2381967.8 2385132.8 2385132.8 2391468.8 2394639.8 2394639.8 2397812.8 2400987.8	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6179.6 6171.5	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0			1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0							0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5	699.5 808.5 917.5 1026.5 1244.5 1353.5 1462.5 1571.5 1680.5 1780.5 1880.5	156.0	590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1680.5 1780.5 1880.5	2369327.8 2372484.8 2375643.8 2378804.8 2381967.8 2385132.8 2391468.8 2394639.8 2391468.8 2397812.8 2400987.8 2400987.8 2404164.8	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6171.5 6163.3 6155.2	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0 7943.8 8035.7	1.6 1.6 1.6	2848.8 3008.8 2919.2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no	0.014 0.014 0.014		0.986 0.986 0.986	0.005 0.005 0.005	0.019 0.019 0.019	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5	699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1680.5 1780.5 1880.5 1880.5 2080.5 2180.5	156.0 218.4 280.8	590.5 699.5 808.5 917.5 1026.5 1244.5 1353.5 1462.5 1571.5 1680.5 1880.5 1882.5 1862.1 1899.7	2369327.8 2372484.8 2375643.8 2378804.8 2381967.8 2385132.8 2391468.8 2391468.8 2394639.8 2400987.8 2400987.8 2400987.8 2410524.8 24170743.8 2416592.8	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6179.6 6171.5 6163.3 6155.2 6147.0 6138.9 6130.8	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0 7943.8 8035.7 7971.5 8030.5	1.6 1.6 1.6 1.6	3008.8 2919.2 2979.4 3039.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no	0.014 0.014 0.014 0.014		0.986 0.986 0.986 0.986	0.005 0.005 0.005 0.005	0.019 0.019 0.019 0.019	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 19.0 20.0 22.0 22.0 22.0 23.0 24.0	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 16.5 17.5 18.5 19.5 20.5 21.5 21.5 22.5 22.5	699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1880.5 1780.5 1880.5 1880.5 2080.5 2180.5 2280.5 2280.5 2280.5	218.4 280.8 343.2 405.6 468.0	590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1680.5 1780.5 1880.5 1884.5 1884.5 1884.5 1884.5 1884.5	2369327.8 2372484.8 2375643.8 2378604.8 2388298.8 2391466.8 2391466.8 2397812.8 2397812.8 2400987.8 2400987.8 2400987.8 24009743.8 2410524.8 24105	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6171.5 6163.3 6157.5 6163.3 6157.5 6147.0 6138.8 6122.8 6114.7 6130.2	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0 7943.8 8035.7 7971.5 8001.0 8030.5 8060.1 8039.6 8119.2	1.6 1.6 1.6 1.6 1.6 1.6 1.6	3008.8 2919.2 2979.4 3039.5 3099.7 3159.8 3220.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no no	0.014 0.014 0.014 0.013 0.013 0.013 0.013		0.986 0.986 0.986 0.986 0.987 0.987 0.987	0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.019 0.019 0.019 0.019 0.018 0.018 0.018	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 15.0 16.0 15.0 16.0 19.0 20.0 22.0 22.0 22.0 22.0 22.0 22.0 2	5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 15.5 15.5 17.5 20.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22	699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1880.5 1880.5 2880.5 2880.5 2880.5	218.4 280.8 343.2 405.6 468.0 530.4 592.8	590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5 1880.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18824.5 18825.5 18824.5 18825.5 18824.5 18825.5 189555.5 18955.5 18955.5 18955.5 189555.5 189555.5 18955.5 19	2369327.8 2375643.8 2375643.8 2385612.8 2385612.8 2385612.8 2394639.8 2397612.8 2400967.8 2400967.8 2400967.8 2400967.8 2400967.8 2400967.8 2410524.8 2410524.8 2410524.8 2410524.8 2420526.8 2420652.8	6253.9 6245.6 6227.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6179.6 6171.5 6163.3 6155.2 6147.0 6130.8 6122.8 6122.8 6122.8 6122.8 6122.8 6114.7 6106.7 6096.6	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7554.5 7650.3 7751.1 7852.0 7943.8 8035.7 8060.1 8030.5 8060.1 8030.5 8119.2 8148.7 8178.3	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	3008.8 2919.2 2979.4 3039.5 3099.7 3159.8 3220.0 3280.2 3340.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no no no no no no no no no n	0.014 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013		0.986 0.986 0.986 0.987 0.987 0.987 0.987 0.987 0.987	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.019 0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 9.0 10.0 12.0 13.0 14.0 15.0 15.0 17.0 20.0 21.0 22.0 23.0 24.0 22.0 22.0 22.0 22.0 22.0 22.0 22	5.5 6.5 7.5 9.5 10.5 12.5 13.5 14.5 16.5 16.5 16.5 16.5 18.5 20.5 22.5 22.5 22.5 22.5 22.5 22.5 22	699.5 808.5 917.5 1026.5 1135.5 1244.5 1135.5 1244.5 1136.0 5 1780.5 1180.5 1180.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5	218.4 280.8 343.2 405.6 468.0 530.4 592.8 655.2 717.6 780.0	590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1780.5 1880.5 1880.5 1880.5 1880.5 1880.7 1997.3 1974.9 2012.5 2050.1 2087.7 2125.3 2162.9 2200.5	266327.8 2372643.8 2375643.8 2375643.8 238167.8 238167.8 238167.8 238167.8 2391468.8 2394763.8 2394763.8 2400987.8 2400987.8 2400781.8 2407343.8 2415624.8 2415624.8 2415624.8 2415624.8 2426562.8 2	6253.9 62245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6171.5 6163.3 6155.2 6147.0 6138.9 6138.9 6138.9 6138.8 6114.7 6106.7 6098.6 6099.6 6082.6 6074.7 6068.7	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0 7943.8 8036.7 8001.0 8030.5 8060.1 8089.6 8119.2 8148.7 8129.2 8148.7 8207.9 8237.6 8267.2	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	3008.8 2919.2 2979.4 3039.5 3099.7 3159.8 3220.0 3280.2 3340.3 3400.5 3460.6 3520.8	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no no no no no no no no no n	0.014 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012		0.986 0.986 0.986 0.987 0.987 0.987 0.987 0.987 0.987 0.988 0.988	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0 17.0 21.0 22.0 22.0 22.0 22.0 22.0 22.0 22	5.5 6.5 7.5 9.5 9.5 10.5 12.5 13.5 13.5 14.5 16.5 16.5 16.5 18.5 21.5 22.5 24.5 22.5 24.5 26.5 27.5 28.5 28.5 29.5 30.5	699.5 808.5 917.5 1026.5 1135.5 1244.5 1355.5 1462.5 1571.5 1880.5 2180.5 2180.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5	218.4 280.8 343.2 405.6 468.0 530.4 592.8 655.2 717.6 780.0 842.4 904.8	590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1780.5 1880.5 1880.5 1880.5 1880.5 1880.5 1880.5 1880.5 1880.5 1880.5 1880.5 1880.5 1980.5 1987.5 1997.5	266327.8 2372643.8 2375643.8 23765643.8 2386152.8 2386152.8 2386152.8 23845638.8 23946538.8 23947638.8 23947638.8 239476438.8 2407343.8 2407343.8 2407343.8 2407343.8 2407343.8 2407343.8 2407343.8 2407343.8 24203268.8 2423628.8 242652.8 242652.8 242652.8 242652.8 242652.8 242652.8 242652.8 242652.8 242652.8 242655.8 243655.8 242655.8 243655.8 2445555.8 2445555.8 2445555.8 2445555.8 2445555.8 2445555.8 2445	6253.9 62245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6171.5 6163.3 6155.2 6147.0 6138.9 6138.9 6138.9 6144.7 6098.6 6090.6 6098.6 6098.6 6074.7 6068.7 6068.7	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0 7943.8 8030.5 8001.0 8030.5 8001.0 8030.5 801.0 8030.5 801.0 8030.5 801.0 8030.5 8040.1 8040.	$\begin{array}{c} 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\ 1.6\\$	3008.8 2919.2 2979.4 3039.5 3099.7 3159.8 3220.0 3280.2 3340.3 3400.5 3460.6 3520.8 3581.0 3641.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no no no no no no no no no n	0.014 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012		0.986 0.986 0.986 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.988 0.988 0.988 0.988	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5.0 6.0 7.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 22.0 22.0 24.0 22.0 28.0 26.0 27.0 28.0 28.0 28.0 27.0 30.0 33.0 33.0 33.0	5.5 6.5 7.5 9.5 10.5 11.5 12.5 13.5 14.5 16.5 11.5 16.5 11.5 20.5 21.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 22.5 24.5 24	669.5 808.5 917.5 1026.5 1136.5 1244.5 1353.5 1446.2 5 1571.5 1880.5 2880.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2880.5 2880.5 2880.5 3080.5 3080.5 3380.5 3380.5	218.4 280.8 343.2 405.6 468.0 530.4 592.8 655.2 717.6 780.0 842.4 904.8 967.2 1029.6 1092.0	590.5 699.5 808.5 917.5 1026.5 1136.5 1136.5 1462.5 1462.5 1462.5 1780.5 1880.5 1880.5 1882.4 1889.7 1889.7 1889.7 1937.3 1974.9 2012.5 2050.1 2050.1 2050.1 2055.2 2055.1 2055.2	2669327.8 2372643.8 2375643.8 2376643.8 23865122.8 23865122.8 23865122.8 2394563.8 2394763.8 2400987.8 2400987.8 2400987.8 24007842.8 2410524.8 2410524.8 2410524.8 2410524.8 2410524.8 2410524.8 2420524.8 2420524.8 2420524.8 2420524.8 2420524.8 24252453.8 2455245.8 24552	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6179.6 6171.5 6163.3 6157.5 6163.3 6157.5 6147.0 6130.8 6122.8 6122.8 6124.7 6108.7 6098.6 6099.6 6082.6 6074.7 6068.8 6058.8 6050.8 6052.8	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7754.1 7852.0 7943.8 8035.7 7971.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8040.1 8032.5 8237.6 8257.6 8257.6 8257.6 8257.6 8257.6 8257.6 8257.6 8257.6 8257.6 82	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	3008.8 2919.2 2979.4 3039.5 3099.7 3159.8 3220.0 3280.2 3340.3 3400.5 3460.6 3520.8 3581.0 3641.1 3701.3 3761.4 3761.4 3761.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00 00 00 00 00 00 00 00 00 00 00 00 00	0.014 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.012 0.012		0.986 0.986 0.986 0.987 0.987 0.987 0.987 0.987 0.987 0.988 0.988 0.988 0.988 0.988 0.988 0.988	0 005 0 00000000	0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.016 0.016	
5.0 6.0 7.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 22.0 22.0 22.0 22.0 22.0 22.0 30.0 31.0 33.0	5.5 6.5 7.5 9.5 9.5 10.5 11.5 12.5 13.5 13.5 15.5 21.5 21.5 22.5 22.5 22.5 22.5 22	699.5 808.5 917.5 1126.5 1135.5 1244.5 1353.5 1462.5 1571.5 1880.5 1880.5 1880.5 2160.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5 2280.5	218.4 280.8 343.2 405.6 468.0 530.4 592.8 655.2 717.6 780.0 842.4 904.8 967.2 1029.6	590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1780.5 1880.5 1880.5 1880.5 1884.5 1884.5 1884.5 1884.5 1884.5 1884.5 1884.5 1884.5 1884.5 1885.7 2015.5 2015.5 2015.7 2015.7 2015.7 216.2 2050.1 2085.7 216.2 228.1 2280.1 2027.7 2313.3 2350.9	266327.8 2372643.8 2375643.8 23765643.8 2386153.2 2386153.2 2386153.2 2384167.8 23944638.8 23944638.8 23944638.8 23944638.8 23944638.8 2400794.3 2400794.3 2400794.3 2407343.8 2407443.8 2	6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6171.5 6163.3 6155.2 6147.0 6138.9 6138.9 6138.9 6138.8 6122.8 6114.7 6106.7 6108.6 6098.6 6062.6 6062.6 6062.6 6062.6 6062.6 6065.8 8 6050.8 6050.8 6050.8 6050.8	6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0 7943.8 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8060.1 8030.5 8050.2 8148.7 8030.5 8050.2 8148.7 8030.5 8050.2 8148.7 8030.5 8050.2 8148.7 8030.5 8050.2 8148.7 81	16 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	3008.8 2919.2 2979.4 3039.5 3099.7 3159.8 3220.0 3280.2 3340.3 3400.5 3460.6 3520.8 3581.0 3641.1 3701.3 3761.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00 00 00 00 00 00 00 00 00 00 00 00 00	0.014 0.014 0.014 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.012 0.012		0.986 0.986 0.986 0.987 0.987 0.987 0.987 0.987 0.987 0.988 0.988 0.988 0.988 0.988 0.988	0 005 0 005	0.019 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.017 0.017 0.017 0.017 0.017	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

					Effective Mat											
	Depth of				Area	$\Delta \sigma_v$	σ' _{vo} +Δσ _v									
Depth (ft)	Midpt (ft)	σ _{vo} (psf)	u (psf)	σ' _{vo} (psf)	(sf)	(psf)	(psf)	OCR	σ'c (psf)	H _o (ft)	$\sigma'_{vo} + \Delta \sigma_v < \sigma'c$	S _{consolidation} (ft)	H ₁₀₀	S _{secondary} (ft)	S c+s (ft)	Ze (ft)
41.0	40.5	4249.5	1528.8	2720.7	2481012.8	5972.4	8693.1				1.0					0.011
42.0	41.5	4372.5	1591.2	2781.3	2484239.8	5964.6	8745.9				1.0					0.011
43.0	42.5	4495.5	1653.6	2841.9	2487468.8	5956.9	8798.8				1.0					0.011
44.0	43.5	4618.5	1716.0	2902.5	2490699.8	5949.2	8851.7				1.0					0.011
45.0	44.5	4741.5	1778.4	2963.1	2493932.8	5941.5	8904.6				1.0					0.011
46.0	45.5	4864.5	1840.8	3023.7	2497167.8	5933.8	8957.5				1.0					0.011
47.0	46.5	4987.5	1903.2	3084.3	2500404.8	5926.1	9010.4				1.0					0.011
48.0 49.0	47.5 48.5	5110.5 5233.5	1965.6 2028.0	3144.9 3205.5	2503643.8 2506884.8	5918.4 5910.8	9063.3 9116.3				1.0					0.011 0.011
49.0	40.5	5255.5	2028.0	3205.5	2500004.0	5910.8	9169.2				1.0 1.0					0.011
51.0	49.5 50.5	5479.5	2152.8	3200.1	2513372.8	5895.5	9222.2				1.0					0.011
52.0	51.5	5602.5	2215.2	3387.3	2516619.8	5887.9	9275.2				1.0					0.011
53.0	52.5	5725.5	2277.6	3447.9	2519868.8	5880.3	9328.2				1.0					0.011
54.0	53.5	5848.5	2340.0	3508.5	2523119.8	5872.7	9381.2				1.0					0.011
55.0	54.5	5971.5	2402.4	3569.1	2526372.8	5865.2	9434.3				1.0					0.011
56.0	55.5	6094.5	2464.8	3629.7	2529627.8	5857.6	9487.3				1.0					0.011
57.0	56.5	6217.5	2527.2	3690.3	2532884.8	5850.1	9540.4				1.0					0.011
58.0	57.5	6340.5	2589.6	3750.9	2536143.8	5842.6	9593.5				1.0					0.011
59.0	58.5	6463.5	2652.0	3811.5	2539404.8	5835.1	9646.6				1.0					0.011
60.0	59.5	6586.5	2714.4	3872.1	2542667.8	5827.6	9699.7				1.0					0.011
61.0	60.5	6709.5	2776.8	3932.7	2545932.8	5820.1	9752.8				1.0					0.011
62.0	61.5	6832.5	2839.2	3993.3	2549199.8	5812.6	9805.9				1.0					0.011
63.0	62.5	6955.5	2901.6	4053.9	2552468.8	5805.2	9859.1				1.0					0.011
64.0	63.5	7078.5	2964.0	4114.5	2555739.8	5797.8	9912.3				1.0					0.011
65.0 66.0	64.5 65.5	7201.5 7324.5	3026.4 3088.8	4175.1 4235.7	2559012.8 2562287.8	5790.4 5783.0	9965.5 10018.7				1.0 1.0					0.011 0.011
67.0	66.5	7447.5	3151.2	4296.3	2565564.8	5775.6	10071.9				1.0					0.011
68.0	67.5	7570.5	3213.6	4356.9	2568843.8	5768.2	10125.1				1.0					0.011
69.0	68.5	7693.5	3276.0	4417.5	2572124.8	5760.8	10178.3				1.0					0.011
70.0	69.5	7816.5	3338.4	4478.1	2575407.8	5753.5	10231.6				1.0					0.011
71.0	70.5	7939.5	3400.8	4538.7	2578692.8	5746.2	10284.9				1.0					0.011
72.0	71.5	8062.5	3463.2	4599.3	2581979.8	5738.9	10338.2				1.0					0.011
73.0	72.5	8185.5	3525.6	4659.9	2585268.8	5731.6	10391.5				1.0					0.011
74.0	73.5	8308.5	3588.0	4720.5	2588559.8	5724.3	10444.8				1.0					0.011
75.0	74.5	8431.5	3650.4	4781.1	2591852.8	5717.0	10498.1				1.0					0.011
76.0	75.5	8554.5	3712.8	4841.7	2595147.8	5709.7	10551.4				1.0					0.011
77.0	76.5	8677.5	3775.2	4902.3	2598444.8	5702.5	10604.8				1.0					0.011
78.0	77.5	8800.5	3837.6	4962.9	2601743.8	5695.3	10658.2				1.0					0.011
79.0	78.5	8923.5	3900.0	5023.5	2605044.8	5688.0	10711.5				1.0					0.011
80.0	79.5 80.5	9046.5	3962.4	5084.1	2608347.8 2611652.8	5680.8 5673.6	10764.9				1.0					0.011
81.0 82.0	81.5	9169.5 9292.5	4024.8 4087.2	5144.7 5205.3	2614959.8	5666.5	10818.3 10871.8				1.0 1.0					0.011 0.011
83.0	82.5	9415.5	4149.6	5265.9	2618268.8	5659.3	10925.2				1.0					0.011
84.0	83.5	9538.5	4212.0	5326.5	2621579.8	5652.2	10923.2				1.0					0.011
85.0	84.5	9661.5	4274.4	5387.1	2624892.8	5645.0	11032.1				1.0					0.011
86.0	85.5	9784.5	4336.8	5447.7	2628207.8	5637.9	11085.6				1.0					0.011
87.0	86.5	9907.5	4399.2	5508.3	2631524.8	5630.8	11139.1				1.0					0.011
88.0	87.5	10030.5	4461.6	5568.9	2634843.8	5623.7	11192.6				1.0					0.011
89.0	88.5	10153.5	4524.0	5629.5	2638164.8	5616.6	11246.1				1.0					0.011
90.0	89.5	10276.5	4586.4	5690.1	2641487.8	5609.6	11299.7				1.0					0.011
91.0	90.5	10399.5	4648.8	5750.7	2644812.8	5602.5	11353.2				1.0					0.011
92.0	91.5	10522.5	4711.2	5811.3	2648139.8	5595.5	11406.8				1.0					0.011
93.0	92.5	10645.5	4773.6	5871.9	2651468.8	5588.4	11460.3				1.0					0.011

							s	ETTLEMENT A	NALYSES (I	MAXIMUM)						
Site:		CLIVE FEDERAL	CELL							Project No.:		SLC1025				
Location: Client: Prepared by	E	CLIVE UTAH ES M.Downing								Date: Reviewed by:		20-Jan-23 B.Baturay				
repared by	y: P ment made u Total Settler Primary Con S Secondary S s Elastic (Imm 2 ONS or Foundatic	M.Downing U.Downing up of three (3) c ment s, = Immen- scolidation s, S = C, H ₀ (1+eo w iettlement s, s, = C _{ec} H ₁₀₀ log w ietdiate) Ze= $\Delta a/Ms$ *We H Δ N	diate Settlem) log[$\sigma^{*}c/\sigma^{*}_{vo}$]) $c_{c} = c_{c}$ $C_{c} = c_{c}$ $H_{o} = int$ $\sigma^{*}c_{o} = i$ $\sigma^{*}c_{o} = i$ $c_{c} = c_{c}$ $\sigma^{*}c_{o} = i$ $c_{c} = c_{c}$ $c_{c} = s$ $H_{o} = th$ $c_{c} = th$ c] + C _c H _{ey} 1+eo compression ind mpression ind titial soil layer t effective precor- initial effective change in verti tial void ratio econdary comp- nickness of con for which second on for primary co- for primary co- fo	$log[(\sigma'_{vo} + \Delta \sigma_v$ dex lex hickness solidation pre- vertical stress cal effective st pression index pression index any settements at nonolidation f soil alyer ayer f soil estimatex	y(o'c) ssure = OCR - ress r at end of pri e calculated (500 t year - estimated structure and Co- rest and Co-	5'vo mary conso years for des ted by prev of the insitu er Materials=	lidation Ign life, assume set ious analyses c	of Unit 2 and of sf		IEC)	B.Baturay				
		SM Unit 2 CL/ML Unit 1 SM		16 38 100		Unit 1 Unit we		1000 pt 1230 pt 62.4 pt 16.0 ft Unit 4 eo = Unit 2 eo = Unit 4 OCR = Unit 2 OCR =	cf cf	gw @ 25' below c Unit 3 Ma = Unit 1 Ms= t ₁ (t ₁₀₀ for primary consolidation) 21 (compliance period of 10,000 years f)	311,04	oroximately 7 feet of upper mat	erial to be removed = 16 fe	tet bgs for modeling		
Depth (ft)	Depth of Midpt (ft)	σ _{vo} (psf)	u (psf)	σ' _{vo} (psf)	Effective Mat Area (sf)	$\Delta \sigma_v$ (psf)	σ' _{vo} +Δσ _v (psf)	OCR	σ'c (psf)	H _o (ft)	σ' _{vo} +Δσ _v < σ'	c S _{consolidation} (ft)	H ₁₀₀	S _{secondary} (ft)	S c+s (ft)	Ze (ft)
0.0						6300.0										
1.0	0.5	51.5		51.5	2353572.8		6347.3	2.8	144.7			0.298	0.70			
2.0 3.0	1.5 2.5	154.5 263.5		154.5 263.5	2356719.8 2359868.8		6441.9 6542.5	2.8	434.1	1.0 1.0		0.214	0.78	86 0.013	0.226	0.02
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0	3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5	372.5 481.5 590.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5		372.5 481.5 590.5 699.5 808.5 917.5 1026.5 1135.5 1244.5 1353.5 1462.5 1571.5	2363019.8 2366172.8 2369327.8 2372484.8 2375643.8 2378804.8 2381967.8 2385132.8 238299.8 2391468.8 2394639.8 2397812.8	6270.6 6262.3 6253.9 6245.6 6237.3 6229.0 6220.7 6212.5 6204.2 6196.0 6187.8 6179.6	6643.1 6743.8 6844.4 6945.1 7045.8 7146.5 7247.2 7348.0 7448.7 7549.5 7650.3 7751.1 7852.0			1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0						0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0	15.5 16.5 17.5 18.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5	1680.5 1780.5 1880.5 2080.5 2180.5 2280.5 2380.5 2480.5 2680.5 2680.5 2780.5 2880.5 2880.5	156.0 218.4 280.8 343.2 405.6 468.0 530.4 592.8 655.2 717.6 780.0	1680.5 1780.5 1880.5 1824.5 1862.1 1899.7 1937.3 1974.9 2012.5 2050.1 2087.7 2125.3 2162.9 2200.5	2400987.8 2404164.8 2407343.8 2410524.8 2410524.8 2410524.8 2420079.8 2420269.8 2420459.8 2420459.8 2420642.8 2430644.8 2430644.8 2430644.8 2432444.8	6163.3 6155.2 6147.0 6138.9 6130.8 6122.8 6114.7 6106.7 6098.6 6090.6 6082.6 6074.7	7852.0 7943.8 8035.7 7971.5 8001.0 8030.5 8060.1 8089.6 8119.2 8148.7 8178.3 8207.9 8237.6 8267.2 8296.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1780.5 1880.5 1824.5 1862.1 1899.7 1937.3 1974.9 2012.5 2050.1 2050.1 2050.7 2125.3 2162.9 2200.5 2238.1	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	no no no no no no no no no no no no no n	0.091 0.088 0.090 0.089 0.088 0.087 0.086 0.085 0.084 0.083 0.082 0.084 0.083	0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	12 0.018 10 0.017 11 0.017 12 0.018 13 0.018 14 0.018 15 0.018 16 0.018 17 0.018 18 0.018 19 0.018	0.106 0.107 0.105 0.105 0.104 0.103 0.103 0.102 0.101 0.100 0.099 0.098	0.02

					Effective Mat											
	Depth of				Area	$\Delta \sigma_v$	σ' _{vo} +Δσ _v									
Depth (ft)	Midpt (ft)	σ _{vo} (psf)	u (psf)	σ' _{vo} (psf)	(sf)	(psf)	(psf)	OCR	σ'c (psf)	H _o (ft)	$\sigma'_{vo} + \Delta \sigma_v < \sigma'c$	S _{consolidation} (ft)	H ₁₀₀	S _{secondary} (ft)	S c+s (ft)	Ze (ft)
41.0	40.5	4249.5	1528.8	2720.7	2481012.8	5972.4	8693.1				1.0					0.011
42.0	41.5	4372.5	1591.2	2781.3	2484239.8	5964.6	8745.9				1.0					0.011
43.0	42.5	4495.5	1653.6	2841.9	2487468.8	5956.9	8798.8				1.0					0.011
44.0	43.5	4618.5	1716.0	2902.5	2490699.8	5949.2	8851.7				1.0					0.011
45.0	44.5	4741.5	1778.4	2963.1	2493932.8	5941.5	8904.6				1.0					0.011
46.0	45.5	4864.5	1840.8	3023.7	2497167.8	5933.8	8957.5				1.0					0.011
47.0	46.5	4987.5	1903.2	3084.3	2500404.8	5926.1	9010.4				1.0					0.011
48.0 49.0	47.5 48.5	5110.5 5233.5	1965.6 2028.0	3144.9 3205.5	2503643.8 2506884.8	5918.4 5910.8	9063.3 9116.3				1.0					0.011 0.011
49.0	40.5	5255.5	2028.0	3205.5	2500004.0	5910.8	9169.2				1.0 1.0					0.011
51.0	49.5 50.5	5479.5	2152.8	3200.1	2513372.8	5895.5	9222.2				1.0					0.011
52.0	51.5	5602.5	2215.2	3387.3	2516619.8	5887.9	9275.2				1.0					0.011
53.0	52.5	5725.5	2277.6	3447.9	2519868.8	5880.3	9328.2				1.0					0.011
54.0	53.5	5848.5	2340.0	3508.5	2523119.8	5872.7	9381.2				1.0					0.011
55.0	54.5	5971.5	2402.4	3569.1	2526372.8	5865.2	9434.3				1.0					0.011
56.0	55.5	6094.5	2464.8	3629.7	2529627.8	5857.6	9487.3				1.0					0.011
57.0	56.5	6217.5	2527.2	3690.3	2532884.8	5850.1	9540.4				1.0					0.011
58.0	57.5	6340.5	2589.6	3750.9	2536143.8	5842.6	9593.5				1.0					0.011
59.0	58.5	6463.5	2652.0	3811.5	2539404.8	5835.1	9646.6				1.0					0.011
60.0	59.5	6586.5	2714.4	3872.1	2542667.8	5827.6	9699.7				1.0					0.011
61.0	60.5	6709.5	2776.8	3932.7	2545932.8	5820.1	9752.8				1.0					0.011
62.0	61.5	6832.5	2839.2	3993.3	2549199.8	5812.6	9805.9				1.0					0.011
63.0	62.5	6955.5	2901.6	4053.9	2552468.8	5805.2	9859.1				1.0					0.011
64.0	63.5	7078.5	2964.0	4114.5	2555739.8	5797.8	9912.3				1.0					0.011
65.0 66.0	64.5 65.5	7201.5 7324.5	3026.4 3088.8	4175.1 4235.7	2559012.8 2562287.8	5790.4 5783.0	9965.5 10018.7				1.0 1.0					0.011 0.011
67.0	66.5	7447.5	3151.2	4296.3	2565564.8	5775.6	10071.9				1.0					0.011
68.0	67.5	7570.5	3213.6	4356.9	2568843.8	5768.2	10125.1				1.0					0.011
69.0	68.5	7693.5	3276.0	4417.5	2572124.8	5760.8	10178.3				1.0					0.011
70.0	69.5	7816.5	3338.4	4478.1	2575407.8	5753.5	10231.6				1.0					0.011
71.0	70.5	7939.5	3400.8	4538.7	2578692.8	5746.2	10284.9				1.0					0.011
72.0	71.5	8062.5	3463.2	4599.3	2581979.8	5738.9	10338.2				1.0					0.011
73.0	72.5	8185.5	3525.6	4659.9	2585268.8	5731.6	10391.5				1.0					0.011
74.0	73.5	8308.5	3588.0	4720.5	2588559.8	5724.3	10444.8				1.0					0.011
75.0	74.5	8431.5	3650.4	4781.1	2591852.8	5717.0	10498.1				1.0					0.011
76.0	75.5	8554.5	3712.8	4841.7	2595147.8	5709.7	10551.4				1.0					0.011
77.0	76.5	8677.5	3775.2	4902.3	2598444.8	5702.5	10604.8				1.0					0.011
78.0	77.5	8800.5	3837.6	4962.9	2601743.8	5695.3	10658.2				1.0					0.011
79.0	78.5	8923.5	3900.0	5023.5	2605044.8	5688.0	10711.5				1.0					0.011
80.0	79.5 80.5	9046.5	3962.4	5084.1	2608347.8 2611652.8	5680.8 5673.6	10764.9				1.0					0.011
81.0 82.0	81.5	9169.5 9292.5	4024.8 4087.2	5144.7 5205.3	2614959.8	5666.5	10818.3 10871.8				1.0 1.0					0.011 0.011
83.0	82.5	9415.5	4149.6	5265.9	2618268.8	5659.3	10925.2				1.0					0.011
84.0	83.5	9538.5	4212.0	5326.5	2621579.8	5652.2	10923.2				1.0					0.011
85.0	84.5	9661.5	4274.4	5387.1	2624892.8	5645.0	11032.1				1.0					0.011
86.0	85.5	9784.5	4336.8	5447.7	2628207.8	5637.9	11085.6				1.0					0.011
87.0	86.5	9907.5	4399.2	5508.3	2631524.8	5630.8	11139.1				1.0					0.011
88.0	87.5	10030.5	4461.6	5568.9	2634843.8	5623.7	11192.6				1.0					0.011
89.0	88.5	10153.5	4524.0	5629.5	2638164.8	5616.6	11246.1				1.0					0.011
90.0	89.5	10276.5	4586.4	5690.1	2641487.8	5609.6	11299.7				1.0					0.011
91.0	90.5	10399.5	4648.8	5750.7	2644812.8	5602.5	11353.2				1.0					0.011
92.0	91.5	10522.5	4711.2	5811.3	2648139.8	5595.5	11406.8				1.0					0.011
93.0	92.5	10645.5	4773.6	5871.9	2651468.8	5588.4	11460.3				1.0					0.011

ATTACHMENT E

Project: SLC Federal Cell Clive Faa	Project Number: SLC1025	Checked by:
Location: Salt Lake City, Utah	Prepared By: M.Downing	Date: 3/11/2021
Boring: GW-36 Date: 23-Dec-91 By: Overland Drilling	Hammer Type: Automatic 140 lb./30-in. Drilling Method: Hollow Stem Auger Ground Elevation (ft) ^[2] : 0.00	$\begin{array}{rrrr} a_{max\ (ground\ surface)} & 0.24 & g^{[3]} \\ Earthquake\ Magnitude: & 7.3 & {}^{[3]} \\ MSF: & 1.05 & {}^{[4]} \end{array}$ Assumed depth to groundwater at time of earthquake (ft)^{[24]}: & 0.0 \\ Assumed\ depth\ to\ groundwater\ at\ time\ of\ drilling\ (ft)^{[24]}: & 20.6 \end{array}

Depth	Elevation	Soil Unit Weight	Soil Unit	USCS Class	Borehole Diameter	Sample Type	ER ^[5]	N _{field}	$\sigma_{\rm v}$	σ _v ', during drilling	σ _v ', during EQ ^[24]		N _{field} Corr	ection H	actors		N_{60}
(ft)	(ft)	(pcf)		Chuss	(mm)	I JI	(%)	(blows/ft)	(psf)	(psf)	(psf)	C _{rod} [6]	C _{energy} ^[7]	C _b ^[8]	Cs ^[9]	C _{SPT} ^[10]	(blows/ft)
0	0.0																
12.0	-12.0	118	Unit 4 Silty CLAY	CL	108.0	SPT	72	9	1416	1416	667	0.80	1.20	1.00	1.00	1.00	9
14.0	-14.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	55	1656	1656	782	0.85	1.20	1.00	1.00	1.00	56
16.0	-16.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	61	1896	1896	898	0.85	1.20	1.00	1.00	1.00	62
18.0	-18.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	32	2136	2136	1013	0.85	1.20	1.00	1.00	1.00	33

Notes:

[1] Evaluation is based on: "Idriss and Boulanger (2008), Soil Liquefaction During Earthquakes, EERI Monograph MNO-12"

[2] Boring location known to exist somewhere in Section 32 of the Clive Facility

[3] a_{max} and earthquake magnitude based on parameters presented in the seismis hazard analysis by AMEC 2012

[4] ``

[5] Estimated to result in C_{energy} of 0.8 assuming Autohammer

[6] C_{rod} accounts for short rod correction (<1 if rod length < 10 meters) (Table 3, I&B 2008)

[7] C_{energy} accounts for rod energy delivered to sampler (Table 3, I&B 2008)

[8] C_b accounts for the effect of the size of the borehole (Table 3, I&B 2008)

[9] C_s accounts for the effect of the liners in the SPT/MODCAL sampler (Table 3, I&B 2008)

[10] C_{SPT} is a correction factor to adjust the blow counts recorded with MOD-CAL samplers to equivalent SPT blow count values.

CSPT is assumed to be 1.0 for SPT samples and 0.60 for MOD-CAL samples based on an outside diameter of 3.0 inches and an inside diameter of 2.4 inches (Burmister, 1948)

[11] m=0.784-0.0768sqrt($(N_1)_{60cs}$) \geq 0.264 is iteratively calculated until $(N_1)_{60cs}$ converges (Equation 33 and 39, I&B 2008)

[12] $C_N = (P_a/\sigma'_v)^m \le 1.7$ accounts for effective overburden stress (Equation 33, I&B 2008)

Boring: GW-36 (continued from previous page)

Date: 23-Dec-91

By: Overland Drilling

Fines Content	[11]	[12]	(N ₁) ₆₀ ^[13]	$\Delta(N_1)_{60}^{[14]}$	(N ₁) _{60cs} ^[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[25]			[27]
Method	m	C _N	(blows/ft)		(blows/ft)	α	β	r _d	Cσ	Kσ	CRR _{M7.5,o'vc}	CSR _{M7.5,} o've	۵(N ₁) ₆₀₋ FC%	(N ₁) _{60CS-Sr}	FS	Ylim
Est	0.477	1.21	10	5.5	16	-0.17	0.02	0.97	0.115	1.100	0.16	0.277	5	15	0.59	
Est	0.264	1.07	60	3.3	63	-0.22	0.02	0.96	0.300	1.100	50.00	0.274	1	61	182.15	
Est	0.264	1.03	64	3.3	67	-0.26	0.03	0.96	0.300	1.100	50.00	0.272	1	65	183.97	
Est	0.324	1.00	33	3.3	36	-0.30	0.03	0.95	0.275	1.100	1.32	0.269	1	34	4.90	
	Content Method Est Est Est	Content MethodmEst0.477Est0.264Est0.264	Content Method m C _N Est 0.477 1.21 Est 0.264 1.07 Est 0.264 1.03	Content Methodm C_N (N1)60Est0.4771.2110Est0.2641.0760Est0.2641.0364	Content Method $(N_1)_{60}^{(12)}$ $(N_1)_{60}^{(12)}$ Est 0.477 1.21 10 5.5 Est 0.264 1.07 60 3.3 Est 0.264 1.03 64 3.3	Content Methodm C_N $(N_1)_{60}^{[01]}$ $\Delta(N_1)_{60}^{[14]}$ $(N_1)_{60es}^{[13]}$ Est0.4771.21105.516Est0.2641.07603.363Est0.2641.03643.367	Content Method m C _N (N ₁) ₆₀ ^[14] (N ₁) _{60cs} ^[14]	Content Methodm C_N (blows/ft) $\Delta(N_1)_{60}^{[14]}$ $(N_1)_{60es}^{[14]}$ Est0.26441.07	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{Content}{Method} = \frac{C_N}{m} \frac{C_N}{C_N} \frac{(N_1)_{60}}{(blows/ft)} \frac{(N_1)_{60}}{(blows/ft)} \frac{(N_1)_{60}}{(blows/ft)} \frac{(N_1)_{60}}{\alpha} \frac{\beta}{r_d} \frac{C_{\sigma}}{C_{\sigma}}$ $\frac{Est}{0.264} \frac{0.264}{1.07} \frac{1.21}{60} \frac{10}{3.3} \frac{5.5}{63} \frac{16}{-0.22} \frac{0.02}{0.02} \frac{0.97}{0.96} \frac{0.115}{0.300}$ $\frac{Est}{0.264} \frac{1.03}{64} \frac{64}{3.3} \frac{67}{67} \frac{-0.26}{0.03} \frac{0.96}{0.96} \frac{0.300}{0.300}$	$\frac{Content}{Method} = \frac{M_1}{m} + \frac{M_2}{C_N} + \frac{M_1}{C_N} + \frac{M_1}{C_$	$\frac{Content}{Method} = \frac{M_1}{m} + \frac{M_2}{C_N} + \frac{M_1}{C_N} + \frac{M_1}{C_$	$\frac{Content}{Method} = \frac{M_1}{m} + \frac{M_2}{C_N} + \frac{(N_1)_{60}}{(blows/ft)} + \frac{(N_1)_{60}}{(blows/ft)} + \frac{M_1}{C_N} + \frac{M_1}{(blows)} + \frac$	$\frac{Content}{Method} = \frac{M_1}{m} + \frac{M_2}{C_N} + \frac{(N_1)_{60}}{(blows/ft)} + \frac{(N_1)_{60es}}{(N_1)_{60es}} + \frac{(N_1)_{60es}}{($	$\frac{Content}{Method} = \frac{M_1}{m} + \frac{M_2}{C_N} + \frac{(N_1)_{60}}{(blows/ft)} + \frac{(N_1)_{60es}}{(N_1)_{60es}} + \frac{(N_1)_{60es}}{($	$\frac{Content}{Method} = \frac{(N_1)_{60}(N_1)_{60}(N_1)}{m} \frac{(N_1)_{60}(N_1)}{(N_1)_{60}(N_1)} \frac{(N_1)_{60es}(N_1)}{m} (N_1)_{60$

[13] $(N_1)_{60} = N_{60} * C_N$ is the overburden corrected penetration resistance (Equation 31, I&B 2008)

[14] $\Delta(N_1)_{60} = \exp[1.63 + (9.7/(FC+0.1)) - (15.7/(FC+0.01))^2]$ represents the change in $(N_1)_{60}$ with fines content (Equation 76, I&B 2008)

[15] $(N_1)_{60cs} = (N_1)_{60} + \Delta(N_1)_{60}$ is the equivalent clean-sand SPT penetration resistance (Equation 75, I&B 2008)

[16] $\alpha(z) = -1.012 - 1.126 \sin((z/11.73) + 5.133)$ in which z is depth in meters (Equation 23, I&B 2008)

[17] $\beta(z) = 0.106 + 0.118 \sin((z/11.28) + 5.142)$ in which z is depth in meters (Equation 24, I&B 2008)

[18] $r_d = \exp[\alpha(z) + \beta(z)M]$ is shear stress reduction coefficient (Equation 22, I&B 2008)

[19] $C_{\sigma}=1/(18.9-2.55 \text{ sqrt}[(N_1)_{60cs}] \le 0.3$ is the coefficient for K_{σ} (Equation 56, I&B 2008)

[20] $K_{\sigma} = 1 - C_{\sigma} \ln(\sigma_{vo}'/P_a) \le 1.1$ is the overburden correction factor (Equation 54, I&B 2008)

[21] CRR_{M7.5, o've} is the derived correlation between CRR and corrected penetration resistance (Equation 70, I&B 2008)

[22] $CSR_{M7.5,\sigma'vc}=0.65(a_{max}/g)(\sigma_v/\sigma_v')r_d(1/MSF)(1/K_{\sigma})$ is the equivalent CSR for the reference values of M=7.5 and $\sigma'_{vc}=1$ atm (Equation 69, I&B 2008)

[23] NL = non-liquefiable; L = potentially liquefiable

[24] Groundwater assumed to be at a depth of 170 feet below ground surface during the field investigation (for blow count correction)

[25] Fines content correction for liquefied shear strength from Seed 1987 (Table 4, pg 126, I&B 2008)

[26] MOD-CAL refers to 2.5-inch ID sampler

[27] $\gamma_{\text{lim}} = 1.859[1.1 - \text{sqrt}((N_1)_{60cs}/46)]^3 > 0$ but less than 50% = limiting shear strain (Equation 86, I&B, 2008)

[28] $F\alpha = 0.032 + 0.69 \text{sqrt}[(N_1)_{60cs}] - 0.13(N_1)_{60cs}$, where $(N_1)_{60cs}$ is limited to values > 7 (Equation 93, I&B, 2008)

[29] $\gamma_{max} = \min[\gamma_{lim}, 0.35(2-FS)((1-F\alpha)/(FS-F\alpha)]$ for $2 > FS > F\alpha$; if FS $< F\alpha$, $\gamma_{max} = \gamma_{lim}$ (Equations 91 & 92, I&B, 2008)

[30] $\Delta Hi = Layer thickness (ft)$

[31] $\varepsilon_v = 1.5 \exp(-0.369 \operatorname{sqrt}[(N_1)_{60cs}] \times [\min(0.08, \gamma_{max})] = \operatorname{post}$ liquefaction volumetric strain (Equation 96, I&B, 2008)

[32] $\Delta Si = (\Delta hi)(\varepsilon v)$

					0.00
Fα	Ymax	ΔHi	εν	Δsi	Cum Settlen
[28]	[29]	[30]	[31]	[32]	

Settlement	0.00	ft
Settlement	0.0	in

Project: SLC Federal Cell Clive Fac Location: Salt Lake City, Utah	Project Number: SLC1025 Prepared By: M.Downing	C	Thecked by Date		
Boring: GW-37	Hammer Type: Automatic 140 lb./30-in.	a _{max (ground surface)} :	0.24	g ^[3]	
Date: 23-Dec-91	Drilling Method: Hollow Stem Auger	Earthquake Magnitude:	7.3	[3]	
By: Overland Drilling	Ground Elevation $(ft)^{[2]}$: 0.00	MSF:	1.05	[4]	
		Assumed depth to groundwater at time of earthqu	ake (ft) ^{[24}	^{1]} :	0.0
		Assumed depth to groundwater at time of dril	ling (ft) ^{[24}	^{1]} :	19.2

Depth	Elevation	Soil Unit Weight	Soil Unit	USCS Class	Borehole Diameter	Sample Type	ER ^[5]	$\mathbf{N}_{ ext{field}}$	$\sigma_{\rm v}$	σ _v ', during drilling	σ _v ', during EQ ^[24]	Ν
(ft)	(ft)	(pcf)		01105	(mm)	1 71	(%)	(blows/ft)	(psf)	(psf)	(psf)	C _{rod} ^[6]
0	0.0											
7.0	-7.0	118	Unit 4 Silty CLAY	CL	108.0	SPT	72	11	826	826	389	0.75
10.0	-10.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	27	1186	1186	562	0.80
12.0	-12.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	25	1426	1426	677	0.80
14.0	-14.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	29	1666	1666	792	0.85
16.0	-16.0	120	CLAY lens	CL	108.0	SPT	72	22	1906	1906	908	0.85
17.0	-17.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	30	2026	2026	965	0.85

Notes:

[1] Evaluation is based on: "Idriss and Boulanger (2008), Soil Liquefaction During Earthquakes, EERI Monograph MNO-12"

[2] Boring location known to exist somewhere in Section 32 of the Clive Facility

[3] a_{max} and earthquake magnitude based on parameters presented in the seismis hazard analysis by AMEC 2012

[4] ``

[5] Estimated to result in C_{energy} of 0.8 assuming Autohammer

[6] C_{rod} accounts for short rod correction (<1 if rod length < 10 meters) (Table 3, I&B 2008)

[7] C_{energy} accounts for rod energy delivered to sampler (Table 3, I&B 2008)

[8] C_b accounts for the effect of the size of the borehole (Table 3, I&B 2008)

[9] C_s accounts for the effect of the liners in the SPT/MODCAL sampler (Table 3, I&B 2008)

[10] C_{SPT} is a correction factor to adjust the blow counts recorded with MOD-CAL samplers to equivalent SPT blow count values. CSPT is assumed to be 1.0 for SPT samples and 0.60 for MOD-CAL samples based on an outside diameter of 3.0 inches and an inside diameter of 2.4 inches (Burmister, 1948)

[11] m=0.784-0.0768sqrt($(N_1)_{60cs}$) \geq 0.264 is iteratively calculated until $(N_1)_{60cs}$ converges (Equation 33 and 39, I&B 2008)

[12] $C_N = (P_a/\sigma'_v)^m \le 1.7$ accounts for effective overburden stress (Equation 33, I&B 2008)

N_{field} Correction Factors

 $C_{energy}^{[7]} C_{b}^{[8]} C_{s}^{[9]} C_{SPT}^{[10]}$ (blows/ft) 1.20 1.00 1.00 1.00 10 26 1.20 1.00 1.00 1.00 1.20 1.00 1.00 1.00 24 1.00 30 1.20 1.00 1.00 22 1.20 1.00 1.00 1.001.20 1.00 1.00 1.00 31

N₆₀

Boring: GW-37 (continued from previous page)

Date: 23-Dec-91

By: Overland Drilling

Fines Content	Fines Content	[11]	[12]	$(N_1)_{60}^{[13]}$	$\Delta(N_1)_{60}^{[14]}$	(N ₁) _{60cs} ^[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[25]			[27]
%	Method	m	C _N	(blows/ft)		(blows/ft)	α	β	r _d	C_{σ}	Kσ	CRR _{M7.5,o'vc}	CSR _{M7.5,\sigma'vc}	۵(N ₁) ₆₀₋ FC%	(N ₁) _{60CS-Sr}	FS	Ylim
	_					• •								-	• •		
100.0	Est	0.437	1.51	15	5.5	20	-0.08	0.01	0.99	0.136	1.100	0.21	0.282	5	20	0.75	
15.0	Est	0.332	1.21	31	3.3	35	-0.14	0.02	0.98	0.257	1.100	1.04	0.278	1	32	3.73	
15.0	Est	0.357	1.15	28	3.3	31	-0.17	0.02	0.97	0.212	1.100	0.55	0.275	1	29	1.99	
15.0	Est	0.328	1.08	32	3.3	35	-0.22	0.02	0.96	0.266	1.100	1.17	0.273	1	33	4.29	
100.0	Est	0.372	1.04	23	5.5	29	-0.26	0.03	0.96	0.192	1.100	0.42	0.270	5	28	1.55	
15.0	Est	0.334	1.01	31	3.3	34	-0.28	0.03	0.95	0.252	1.100	0.96	0.269	1	32	3.59	

[13] $(N_1)_{60} = N_{60} * C_N$ is the overburden corrected penetration resistance (Equation 31, I&B 2008)

 $[14] \Delta(N_1)_{60} = \exp[1.63 + (9.7/(FC+0.1)) - (15.7/(FC+0.01))^2]$ represents the change in $(N_1)_{60}$ with fines content (Equation 76, I&B 2008)

[15] $(N_1)_{60cs} = (N_1)_{60} + \Delta(N_1)_{60}$ is the equivalent clean-sand SPT penetration resistance (Equation 75, I&B 2008)

[16] $\alpha(z) = -1.012 - 1.126 \sin((z/11.73) + 5.133)$ in which z is depth in meters (Equation 23, I&B 2008)

[17] $\beta(z) = 0.106 + 0.118 \sin((z/11.28) + 5.142)$ in which z is depth in meters (Equation 24, I&B 2008)

[18] $r_d = \exp[\alpha(z) + \beta(z)M]$ is shear stress reduction coefficient (Equation 22, I&B 2008)

[19] $C_{\sigma}=1/(18.9-2.55 \text{ sqrt}[(N_1)_{60cs}] \le 0.3$ is the coefficient for K_{σ} (Equation 56, I&B 2008)

[20] $K_{\sigma} = 1-C_{\sigma} \ln(\sigma_{vo}'/P_a) \le 1.1$ is the overburden correction factor (Equation 54, I&B 2008)

[21] CRR_{M7.5, o've} is the derived correlation between CRR and corrected penetration resistance (Equation 70, I&B 2008)

[22] $\text{CSR}_{M7.5,\sigma'vc}=0.65(a_{max}/g)(\sigma_v/\sigma_v')r_d(1/\text{MSF})(1/K_{\sigma})$ is the equivalent CSR for the reference values of M=7.5 and $\sigma'_{vc}=1$ atm (Equation 69, I&B 2008)

[23] NL = non-lique fiable; L = potentially lique fiable

[24] Groundwater assumed to be at a depth of 170 feet below ground surface during the field investigation (for blow count correction)

[25] Fines content correction for liquefied shear strength from Seed 1987 (Table 4, pg 126, I&B 2008)

[26] MOD-CAL refers to 2.5-inch ID sampler

[27] $\gamma_{\text{lim}} = 1.859[1.1 - \text{sqrt}((N_1)_{60cs}/46)]^3 > 0$ but less than 50% = limiting shear strain (Equation 86, I&B, 2008)

[28] $F\alpha = 0.032 + 0.69 \text{sqrt}[(N_1)_{60cs}] - 0.13(N_1)_{60cs}$, where $(N_1)_{60cs}$ is limited to values > 7 (Equation 93, I&B, 2008)

[29] $\gamma_{max} = \min[\gamma_{lim}, 0.35(2-FS)((1-F\alpha)/(FS-F\alpha)]$ for $2 > FS > F\alpha$; if FS $< F\alpha$, $\gamma_{max} = \gamma_{lim}$ (Equations 91 & 92, I&B, 2008)

[30] $\Delta Hi = Layer thickness (ft)$

[31] $\varepsilon_v = 1.5 \exp(-0.369 \operatorname{sqrt}[(N_1)_{60 \operatorname{cs}}] \times [\min(0.08, \gamma_{\max})] = \operatorname{post}$ liquefaction volumetric strain (Equation 96, I&B, 2008)

[32] $\Delta Si = (\Delta hi)(\varepsilon v)$

[28]	[29]	[30]	[31]	[32]	
Fα	Ymax	ΔHi	εν	Δsi	Cum Settlen
					0.00
					0.00

Settlement	0.00	ft	
Settlement	0.0	in	

Project: SLC Federal Cell Clive Fat Location: Salt Lake City, Utah	Project Number: SLC1025 Prepared By: M.Downing	C	Thecked b Dat	-	
Boring: GW-38	Hammer Type: Automatic 140 lb./30-in.	a_{\max} (ground surface):	0.24	g ^[3]	
Date: 24-Dec-91	Drilling Method: Hollow Stem Auger	Earthquake Magnitude:	7.3	[3]	
By: Overland Drilling	Ground Elevation $(ft)^{[2]}$: 0.00	MSF:	1.05	[4]	
		Assumed depth to groundwater at time of earthqu	ake (ft) ^{[24}	^{4]} : 0.0	
		Assumed depth to groundwater at time of dril	ling (ft) ^{[24}	^{4]} : 20.7	

Depth	Elevation	Soil Unit Weight	Soil Unit	USCS Class	Borehole Diameter	Sample Type	ER ^[5]	N _{field}	$\sigma_{\rm v}$	σ _v ', during drilling	σ _v ', during EQ ^[24]	Ν
(ft)	(ft)	(pcf)			(mm)	1 71	(%)	(blows/ft)	(psf)	(psf)	(psf)	C _{rod} ^[6]
0	0.0											
7.0	-7.0	118	Unit 4 Silty CLAY	CL	108.0	SPT	72	15	826	826	389	0.75
10.0	-10.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	21	1186	1186	562	0.80
12.0	-12.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	63	1426	1426	677	0.80
14.0	-14.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	31	1666	1666	792	0.85
16.0	-16.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	20	1906	1906	908	0.85
18.0	-18.0	120	Unit 3 Silty Sand	SM	108.0	SPT	72	25	2146	2146	1023	0.85

Notes:

[1] Evaluation is based on: "Idriss and Boulanger (2008), Soil Liquefaction During Earthquakes, EERI Monograph MNO-12"

[2] Boring location known to exist somewhere in Section 32 of the Clive Facility

[3] a_{max} and earthquake magnitude based on parameters presented in the seismis hazard analysis by AMEC 2012

[4] ``

[5] Estimated to result in C_{energy} of 0.8 assuming Autohammer

[6] C_{rod} accounts for short rod correction (<1 if rod length < 10 meters) (Table 3, I&B 2008)

[7] C_{energy} accounts for rod energy delivered to sampler (Table 3, I&B 2008)

[8] C_b accounts for the effect of the size of the borehole (Table 3, I&B 2008)

[9] C_s accounts for the effect of the liners in the SPT/MODCAL sampler (Table 3, I&B 2008)

[10] C_{SPT} is a correction factor to adjust the blow counts recorded with MOD-CAL samplers to equivalent SPT blow count values. CSPT is assumed to be 1.0 for SPT samples and 0.60 for MOD-CAL samples based on an outside diameter of 3.0 inches and an inside diameter of 2.4 inches (Burmister, 1948)

[11] m=0.784-0.0768sqrt($(N_1)_{60cs}$) \geq 0.264 is iteratively calculated until $(N_1)_{60cs}$ converges (Equation 33 and 39, I&B 2008)

[12] $C_N = (P_a/\sigma'_v)^m \le 1.7$ accounts for effective overburden stress (Equation 33, I&B 2008)

N_{field} Correction Factors

C _{energy} ^[7]	C _b ^[8]	Cs ^[9]	C _{SPT} ^[10]	(blows/ft)
1.20	1.00	1.00	1.00	14
1.20	1.00	1.00	1.00	20
1.20	1.00	1.00	1.00	60
1.20	1.00	1.00	1.00	32
1.20	1.00	1.00	1.00	20
1.20	1.00	1.00	1.00	26

N₆₀

Boring: GW-38 (continued from previous page)

Date: 24-Dec-91

By: Overland Drilling

Fines Content	Fines Content	[11]	[12]	$(N_1)_{60}^{[13]}$	$\Delta(N_1)_{60}^{[14]}$	(N ₁) _{60cs} ^[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[25]			[27]
%	Method	m	C _N	(blows/ft)		(blows/ft)	α	β	r _d	Cσ	Kσ	CRR _{M7.5,o'vc}	CSR _{M7.5, \sigma've}	۵(N ₁) ₆₀₋ FC%	(N ₁) _{60CS-Sr}	FS	Ylim
100.0	Est	0.399	1.46	20	5.5	25	-0.08	0.01	0.99	0.164	1.100	0.29	0.282	5	25	1.04	
15.0	Est	0.375	1.24	25	3.3	28	-0.14	0.02	0.98	0.188	1.100	0.40	0.278	1	26	1.43	
15.0	Est	0.264	1.11	67	3.3	70	-0.17	0.02	0.97	0.300	1.100	50.00	0.275	1	68	181.73	
15.0	Est	0.315	1.08	34	3.3	37	-0.22	0.02	0.96	0.300	1.100	1.91	0.273	1	35	7.02	
15.0	Est	0.404	1.04	21	3.3	25	-0.26	0.03	0.96	0.160	1.100	0.28	0.270	1	22	1.03	9.4%
15.0	Est	0.373	0.99	25	3.3	29	-0.30	0.03	0.95	0.190	1.100	0.41	0.268	1	26	1.53	

[13] $(N_1)_{60} = N_{60} * C_N$ is the overburden corrected penetration resistance (Equation 31, I&B 2008)

[14] $\Delta(N_1)_{60} = \exp[1.63 + (9.7/(FC+0.1)) - (15.7/(FC+0.01))^2]$ represents the change in $(N_1)_{60}$ with fines content (Equation 76, I&B 2008)

[15] $(N_1)_{60cs} = (N_1)_{60} + \Delta(N_1)_{60}$ is the equivalent clean-sand SPT penetration resistance (Equation 75, I&B 2008)

[16] $\alpha(z) = -1.012 - 1.126 \sin((z/11.73) + 5.133)$ in which z is depth in meters (Equation 23, I&B 2008)

[17] $\beta(z) = 0.106 + 0.118 \sin((z/11.28) + 5.142)$ in which z is depth in meters (Equation 24, I&B 2008)

[18] $r_d = \exp[\alpha(z) + \beta(z)M]$ is shear stress reduction coefficient (Equation 22, I&B 2008)

[19] $C_{\sigma}=1/(18.9-2.55 \text{ sqrt}[(N_1)_{60cs}] \le 0.3$ is the coefficient for K_{σ} (Equation 56, I&B 2008)

[20] $K_{\sigma} = 1-C_{\sigma}\ln(\sigma_{vo}'/P_a) \le 1.1$ is the overburden correction factor (Equation 54, I&B 2008)

[21] CRR_{M7.5, c'vc} is the derived correlation between CRR and corrected penetration resistance (Equation 70, I&B 2008)

[22] $CSR_{M7.5,\sigma'vc}=0.65(a_{max}/g)(\sigma_v/\sigma_v')r_d(1/MSF)(1/K_{\sigma})$ is the equivalent CSR for the reference values of M=7.5 and $\sigma'_{vc}=1$ atm (Equation 69, I&B 2008)

[23] NL = non-lique fiable; L = potentially lique fiable

[24] Groundwater assumed to be at a depth of 170 feet below ground surface during the field investigation (for blow count correction)

[25] Fines content correction for liquefied shear strength from Seed 1987 (Table 4, pg 126, I&B 2008)

[26] MOD-CAL refers to 2.5-inch ID sampler

[27] $\gamma_{\text{lim}} = 1.859[1.1 - \text{sqrt}((N_1)_{60cs}/46)]^3 > 0$ but less than 50% = limiting shear strain (Equation 86, I&B, 2008)

[28] $F\alpha = 0.032 + 0.69 \text{sqrt}[(N_1)_{60cs}] - 0.13(N_1)_{60cs}$, where $(N_1)_{60cs}$ is limited to values > 7 (Equation 93, I&B, 2008)

[29] $\gamma_{\text{max}} = \min[\gamma_{\text{lim}}, 0.35(2-\text{FS})((1-\text{F}\alpha)/(\text{FS}-\text{F}\alpha)]$ for $2 > \text{FS} > \text{F}\alpha$; if $\text{FS} < \text{F}\alpha$, $\gamma_{\text{max}} = \gamma_{\text{lim}}$ (Equations 91 & 92, I&B, 2008)

[30] $\Delta Hi = Layer thickness (ft)$

[31] $\varepsilon_v = 1.5 \exp(-0.369 \operatorname{sqrt}[(N_1)_{60 \operatorname{cs}}] \times [\min(0.08, \gamma_{\max})] = \operatorname{post}$ liquefaction volumetric strain (Equation 96, I&B, 2008)

[32] $\Delta Si = (\Delta hi)(\varepsilon v)$

[28]	[29]	[30]	[31]	[32]	
Fα	Ymax	ΔHi	٤٧	Δsi	Cum Settlen
					0.02
					0.02
0.26	3.2%	2.0	0.8%	0.02	-0.02
			Settlement	0.02	ft
			Settlement	0.2	in
0.26	3.2%	2.0	Settlement	0.02	ft

ATTACHMENT E2

consultants

Project: Federal Cell Location: Salt Lake City, Utah Project Number: SLC1025 Prepared By: M.Downing

Boring: Multiple Date: -

By: Overland Drilling

Hammer Type: Automatic 140 lb./30-in. Drilling Method: Hollow Stem Auger Ground Elevation (ft)^[2]: 0.00

Checked by: B.Baturay Date: 1/19/2023

0.0

g^[3] 0.24 amax (ground surface): [3] Earthquake Magnitude: 7.3 [4] MSF: 1.05

1288

Assumed depth to groundwater at time of earthquake $(\mathrm{ft})^{[24]}$:

Assumed depth to groundwater at time of drilling (ft)^[24]: 20.0

Depth	Elevation	Soil Unit Weight	Soil Unit	USCS Class	Borehole Diameter	Sample	ER ^[5]	N _{field}	σ_{v}	σ _v ', during drilling	σ _v ', during EQ ^[24]		N _{field} Corr	ection I	Factors		N_{60}	Fines Content
(ft)	(ft)	(pcf)		Class	(mm)	Туре	(%)	(blows/ft)	(psf)	(psf)	(psf)	C _{rod} [6]	C _{energy} ^[7]	C _b ^[8]	Cs ^[9]	C _{SPT} ^[10]	(blows/ft)	%
0 10.0	0.0 4259.84	120	Ciltar Carad	CM	106.0	CDT	02	54	1160	1160	526	0.90	1 27	1 1 4	1.00	1.00	67	15.0
10.0	4259.84	120 120	Silty Sand Silty Sand	SM SM	196.0 196.0	SPT SPT	82 82	54 19	1160 1392	1160 1392	536 643	$\begin{array}{c} 0.80\\ 0.80\end{array}$	1.37 1.37	1.14 1.14	1.00 1.00	1.00 1.00	67 24	15.0 15.0
12.0	4255.84	120	Silty Sand	SM	196.0	SPT	82 82	19	1624	1624	750	0.80	1.37	1.14	1.00	1.00	24 25	15.0
14.0	4253.84	120	Silty Sand	SM	196.0	SPT	82 82	32	1856	1856	858	0.85	1.37	1.14	1.00	1.00	23 42	15.0
18.0	4251.84	120	Silty Sand	SM	196.0	SPT	82 82	21	2088	2088	965	0.85	1.37	1.14	1.00	1.00	42 28	15.0
20.0	4249.84	120	Silty Sand	SM	196.0	SPT	82 82	12	2088	2088	1072	0.85	1.37	1.14	1.00	1.00	28 18	15.0
20.0	4247.84	120	Silty Sand	SM	196.0	SPT	82 82	59	2520	2320	1072	0.95	1.37	1.14	1.00	1.00	87	15.0
19.8	4256.7	120	Silty Sand	SM	196.0	SPT	82 82	12	2332	2427	1061	0.95	1.37	1.14	1.00	1.00	87 18	15.0
21.8	4254.73	120	Silty Sand	SM	196.0	SPT	82	23	2529	2416	1168	0.95	1.37	1.14	1.00	1.00	34	15.0
23.8	4252.73	120	Silty Sand	SM	196.0	SPT	82	19	2761	2524	1276	0.95	1.37	1.14	1.00	1.00	28	15.0
10.0	4264	120	Silty Sand	SM	196.0	SPT	82	19	1160	1160	536	0.80	1.37	1.14	1.00	1.00	17	15.0
15.0	4259	120	Silty Sand	SM	196.0	SPT	82	36	1740	1740	804	0.85	1.37	1.14	1.00	1.00	48	15.0
20	4248.9	120	Silty Sand	SM	196	SPT	82	18	2320	2320	1072	0.05	1.37	1.14	1.00	1.00	27	15.0
25	4243.9	120	Silty Sand	SM	196	SPT	82	38	2900	2520	1340	0.95	1.37	1.14	1.00	1.00	56	15.0
8	4266	120	Silty Sand	SM	196	SPT	82	32	928	928	429	0.75	1.37	1.14	1.00	1.00	37	15.0
10	4264	120	Silty Sand	SM	196	SPT	82	57	1160	1160	536	0.80	1.37	1.14	1.00	1.00	71	15.0
10	4262	120	Silty Sand	SM	196	SPT	82	29	1392	1392	643	0.80	1.37	1.14	1.00	1.00	36	15.0
16	4258	120	Silty Sand	SM	196	SPT	82	2)	1856	1856	858	0.85	1.37	1.14	1.00	1.00	28	15.0
18	4256	120	Silty Sand	SM	196	SPT	82	22	2088	2088	965	0.85	1.37	1.14	1.00	1.00	20	15.0
22	4252	120	Silty Sand	SM	196	SPT	82	21	2552		1179	0.95	1.37	1.14	1.00	1.00	31	15.0
24	4250	120	Silty Sand	SM	196	SPT	82	21	2784	2534.4	1286	0.95	1.37	1.14	1.00	1.00	31	15.0
12	4258	120	Silty Sand	SM	196	SPT	82	33	1392	1392	643	0.80	1.37	1.14	1.00	1.00	41	15.0
14	4256	120	Silty Sand	SM	196	SPT	82	39	1624	1624	750	0.85	1.37	1.14	1.00	1.00	52	15.0
16	4254	120	Silty Sand	SM	196	SPT	82	51	1856	1856	858	0.85	1.37	1.14	1.00	1.00	68	15.0
18	4252	120	Silty Sand	SM	196	SPT	82	13	2088	2088	965	0.85	1.37	1.14	1.00	1.00	17	15.0
20	4250	120	Silty Sand	SM	196	SPT	82	21	2320	2320	1072	0.95	1.37	1.14	1.00	1.00	31	15.0
24	4246	120	Silty Sand	SM	196	SPT	82	93	2784	2534.4	1286	0.95	1.37	1.14	1.00	1.00	138	15.0
26	4244	120	Silty Sand	SM	196	SPT	82	30	3016	2641.6	1394	0.95	1.37	1.14	1.00	1.00	44	15.0
14	4255.36	120	Silty Sand	SM	196	SPT	82	92	1624	1624	750	0.85	1.37	1.14	1.00	1.00	122	15.0
16	4253.36	120	Silty Sand	SM	196	SPT	82	17	1856	1856	858	0.85	1.37	1.14	1.00	1.00	23	15.0
20	4249.36	120	Silty Sand	SM	196	SPT	82	110	2320	2320	1072	0.95	1.37	1.14	1.00	1.00	163	15.0
22	4247.36	120	Silty Sand	SM	196	SPT	82	36	2552	2427.2	1179	0.95	1.37	1.14	1.00	1.00	53	15.0
24	4245.36	120	Silty Sand	SM	196	SPT	82	18	2784	2534.4	1286	0.95	1.37	1.14	1.00	1.00	27	15.0
10	4262	120	Silty Sand	SM	196	SPT	82	25	1160	1160	536	0.80	1.37	1.14	1.00	1.00	31	15.0
12	4260	120	Silty Sand	SM	196	SPT	82	38	1392	1392	643	0.80	1.37	1.14	1.00	1.00	47	15.0
14	4258	120	Silty Sand	SM	196	SPT	82	125	1624	1624	750	0.85	1.37	1.14	1.00	1.00	166	15.0
16	4256	120	Silty Sand	SM	196	SPT	82	51	1856	1856	858	0.85	1.37	1.14	1.00	1.00	68	15.0
18	4254	120	Silty Sand	SM	196	SPT	82	38	2088	2088	965	0.85	1.37	1.14	1.00	1.00	50	15.0
22	4250	120	Silty Sand	SM	196	SPT	82	106	2552	2427.2	1179	0.95	1.37	1.14	1.00	1.00	157	15.0
24	4248	120	Silty Sand	SM	196	SPT	82	72	2784	2534.4	1286	0.95	1.37	1.14	1.00	1.00	107	15.0
26	4246	120	Silty Sand	SM	196	SPT	82	17	3016		1394	0.95	1.37	1.14	1.00	1.00	25	15.0
8	4260	120	Silty Sand	SM	196	SPT	82	27	928	928	429	0.75	1.37	1.14	1.00	1.00	32	15.0
10	4258	120	Silty Sand	SM	196	SPT	82	25	1160	1160	536	0.80	1.37	1.14	1.00	1.00	31	15.0
12	4256	120	Silty Sand	SM	196	SPT	82	29	1392	1392	643	0.80	1.37	1.14	1.00	1.00	36	15.0
14	4254	120	Silty Sand	SM	196	SPT	82	22	1624	1624	750	0.85	1.37	1.14	1.00	1.00	29	15.0
16	4252	120	Silty Sand	SM	196	SPT	82	30	1856		858	0.85	1.37	1.14	1.00	1.00	40	15.0
18	4250	120	Silty Sand	SM	196	SPT	82	13	2088	2088	965	0.85	1.37	1.14	1.00	1.00	17	15.0
20	4248	120	Silty Sand	SM	196	SPT	82	19	2320	2320	1072	0.95	1.37	1.14	1.00	1.00	28	15.0
8	4260	120	Silty Sand	SM	196	SPT	82	21	928	928	429	0.75	1.37	1.14	1.00	1.00	25	15.0
10	4258	120	Silty Sand	SM	196	SPT	82	63	1160	1160	536	0.80	1.37	1.14	1.00	1.00	79	15.0
12	4256	120	Silty Sand	SM	196	SPT	82	31	1392	1392	643	0.80	1.37	1.14	1.00	1.00	39	15.0
14	4254	120	Silty Sand	SM	196	SPT	82	20	1624	1624	750	0.85	1.37	1.14	1.00	1.00	27	15.0
16	4252	120	Silty Sand	SM	196	SPT	82	25	1856	1856	858	0.85	1.37	1.14	1.00	1.00	33	15.0
18	4250	120	Silty Sand	SM	196	SPT	82	29	2088	2088	965	0.85	1.37	1.14	1.00	1.00	38	15.0
20	4248	120	Silty Sand	SM	196	SPT	82	21	2320	2320	1072	0.95	1.37	1.14	1.00	1.00	31	15.0
22	4246	120	Silty Sand	SM	196	SPT	82	18	2552	2427.2	1179	0.95	1.37	1.14	1.00	1.00	27	15.0

Evaluation reflects SPT-blow counts from borings GW-17A, -18, 19-A, -19B, -25, -26, -27, -28, -36, -37, -38 (Bingham Environmental, 1992) for Unti 3 sand-like soils

[1] Evaluation is based on: "Idriss and Boulanger (2008), Soil Liquefaction During Earthquakes, EERI Monograph MNO-12"

- [2] Boring location known to exist somewhere in Section 32 of the Clive Facility
- [3] a_{max} and earthquake magnitude based on parameters presented in the seismis hazard analysis by AMEC 2012
- [4] Magnitude scaling factor, (6.9 e^-Magnitude/4)-0.058, up to 1.8.
- [5] Estimated to result in C_{energy} of 0.8 assuming Autohammer
- [6] C_{rod} accounts for short rod correction (<1 if rod length < 10 meters) (Table 3, I&B 2008)
- [7] C_{energy} accounts for rod energy delivered to sampler (Table 3, I&B 2008)
- [8] C_b accounts for the effect of the size of the borehole (Table 3, I&B 2008)
- [9] C_s accounts for the effect of the liners in the SPT/MODCAL sampler (Table 3, I&B 2008)
- [10] C_{SPT} is a correction factor to adjust the blow counts recorded with MOD-CAL samplers to equivalent SPT blow count values.
 - CSPT is assumed to be 1.0 for SPT samples and 0.60 for MOD-CAL samples based on an outside diameter of 3.0 inches and an inside diameter of 2.4 inches (Burmister, 1948)
- $[11] m=0.784-0.0768 sqrt((N_1)_{60cs}) \ge 0.264 is iteratively calculated until (N_1)_{60cs} converges (Equation 33 and 39, I\&B 2008)$
- [12] $C_N=(P_a/\sigma'_v)^m \le 1.7$ accounts for effective overburden stress (Equation 33, I&B 2008)

Boring: Multiple (continued from previous page)

Date: -

By: Overland Drilling

Fines Content Method	[11]	[12]	(N ₁) ₆₀ ^[13]	$\Delta(N_1)_{60}^{[14]}$	(N ₁) _{60cs} ^[15]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[25]		
Wiethou	m	C _N	(blows/ft)		(blows/ft)	α	β	r _d	Cσ	Kσ	CRR _{M7.5,o've}	CSR _{M7.5,g've}	Δ(N ₁) ₆₀₋ FC%	(N ₁) _{60CS-Sr}	FS
Est	0.264	1.17	79	3.3	82	-0.14	0.02	0.98	0.300	1.100	50.00	0.285	1	80	2.00
Est	0.358	1.16	28	3.3	31	-0.17	0.02	0.97	0.211	1.100	0.54	0.283	1	29	1.91
Est	0.357	1.10	28	3.3	31	-0.22	0.02	0.96	0.212	1.100	0.55	0.281	1	29	1.97
Est	0.264	1.04	44	3.3	47	-0.26	0.03	0.96	0.300	1.100	101.20	0.278	1	45	2.00
Est	0.355	1.00	28	3.3	31	-0.30	0.03	0.95	0.215	1.100	0.58	0.276	1	29	2.00
Est	0.438	0.96	17	3.3	20	-0.35	0.04	0.94	0.135	1.092	0.21	0.276	1	18	0.76
Est	0.264	0.96	84	3.3	88	-0.40	0.04	0.93	0.300	1.100	50.00	0.271	1	85	2.00
Est	0.437	0.96	17	3.3	20	-0.34	0.04	0.94	0.136	1.094	0.21	0.276	1	18	0.77
Est	0.324	0.96	33	3.3	36	-0.39	0.04	0.93	0.277	1.100	1.36	0.272	1	34	2.00
Est	0.366	0.94	26	3.3	30	-0.44	0.05	0.92	0.200	1.100	0.47	0.269	1	27	1.73
Est	0.397	1.27	22	3.3	25	-0.14	0.02	0.98	0.166	1.100	0.30	0.285	1	23	1.06
Est	0.264	1.05	50	3.3	54	-0.24	0.03	0.96	0.300	1.100	50.00	0.280	1	51	2.00
Est	0.370	0.97	26	3.3	29	-0.35	0.04	0.94	0.194	1.100	0.43	0.274	1	27	1.58
Est	0.264	0.95	53	3.3	57	-0.47	0.05	0.92	0.300	1.100	50.00	0.267	1	54	2.00
Est	0.264	1.24	47	3.3	50	-0.10	0.01	0.98	0.300	1.100	537.05	0.287	1	48	2.00
Est	0.264	1.17	83	3.3	87	-0.14	0.02	0.98	0.300	1.100	50.00	0.285	1	84	2.00
Est	0.275	1.12	41	3.3	44	-0.17	0.02	0.97	0.300	1.100	18.51	0.283	1	42	2.00
Est	0.347	1.05	29	3.3	32	-0.26	0.03	0.96	0.228	1.100	0.69	0.278	1	30	2.00
Est	0.346	1.00	29	3.3	33	-0.30	0.03	0.95	0.220	1.100	0.71	0.276	1	30	2.00
Est	0.343	0.95	30	3.3	33	-0.40	0.04	0.93	0.235	1.100	0.75	0.270	1	31	2.00
Est	0.346	0.94	29	3.3	33	-0.45	0.04	0.92	0.229	1.100	0.70	0.269	1	30	2.00
Est	0.264	1.12	46	3.3	49	-0.17	0.02	0.97	0.300	1.100	369.99	0.283	1	47	2.00
Est	0.264	1.07	55	3.3	59	-0.22	0.02	0.96	0.300	1.100	50.00	0.281	1	56	2.00
Est	0.264	1.04	70	3.3	73	-0.26	0.03	0.96	0.300	1.100	50.00	0.278	1	71	2.00
Est	0.435	1.01	17	3.3	21	-0.30	0.03	0.95	0.137	1.100	0.21	0.276	1	18	0.77
Est	0.340	0.97	30	3.3	33	-0.35	0.04	0.94	0.241	1.100	0.82	0.274	1	31	2.00
Est	0.264	0.95	131	3.3	135	-0.45	0.05	0.92	0.300	1.100	50.00	0.269	1	132	2.00
Est	0.264	0.95	42	3.3	45	-0.50	0.06	0.91	0.300	1.100	33.96	0.266	1	43	2.00
Est	0.264	1.07	131	3.3	134	-0.22	0.00	0.96	0.300	1.100	50.00	0.281	1	132	2.00
Est	0.385	1.07	24	3.3	27	-0.22	0.02	0.96	0.300	1.100	0.35	0.278	1	25	1.24
Est	0.264	0.98	159	3.3	162	-0.35	0.03	0.94	0.300	1.100	50.00	0.278	1	160	2.00
Est	0.264	0.98	51	3.3	55	-0.33	0.04	0.94	0.300	1.100	50.00	0.274	1	52	2.00
Est	0.204	0.90	25	3.3	28	-0.45	0.04	0.93	0.300	1.093	0.39	0.271	1	26	1.45
Est	0.295	1.19	37	3.3	41	-0.14	0.03	0.92	0.300	1.100	4.94	0.285	1	38	2.00
Est	0.293	1.19	53	3.3	56	-0.14 -0.17	0.02	0.98	0.300	1.100	4.94 50.00	0.283	1	58 54	2.00
	0.264					-0.17	0.02						1	54 179	
Est		1.07	178	3.3	181			0.96	0.300	1.100	50.00	0.281	1		2.00
Est	0.264	1.04	70	3.3	73	-0.26	0.03	0.96	0.300	1.100	50.00	0.278	1	71	2.00
Est	0.264	1.00	51	3.3	54	-0.30	0.03	0.95	0.300	1.100	50.00	0.276	1	52	2.00
Est	0.264	0.96	152	3.3	155	-0.40	0.04	0.93	0.300	1.100	50.00	0.271	1	153	2.00
Est	0.264	0.95	102	3.3	105	-0.45	0.05	0.92	0.300	1.100	50.00	0.269	1	103	2.00
Est	0.390	0.92	23	3.3	26	-0.50	0.06	0.91	0.172	1.072	0.33	0.273	1	24	1.20
Est	0.280	1.26	40	3.3	43	-0.10	0.01	0.98	0.300	1.100	12.94	0.287	1	41	2.00
Est	0.295	1.19	37	3.3	41	-0.14	0.02	0.98	0.300	1.100	4.94	0.285	1	38	2.00
Est	0.275	1.12	41	3.3	44	-0.17	0.02	0.97	0.300	1.100	18.51	0.283	1	42	2.00
Est	0.329	1.09	32	3.3	35	-0.22	0.02	0.96	0.264	1.100	1.13	0.281	1	33	2.00
Est	0.272	1.04	41	3.3	45	-0.26	0.03	0.96	0.300	1.100	24.52	0.278	1	42	2.00
Est	0.435	1.01	17	3.3	21	-0.30	0.03	0.95	0.137	1.100	0.21	0.276	1	18	0.77
Est	0.360	0.97	27	3.3	31	-0.35	0.04	0.94	0.208	1.100	0.52	0.274	1	28	1.90
Est	0.327	1.31	32	3.3	35	-0.10	0.01	0.98	0.269	1.100	1.22	0.287	1	33	2.00
Est	0.264	1.17	92	3.3	95	-0.14	0.02	0.98	0.300	1.100	50.00	0.285	1	93	2.00
Est	0.264	1.12	43	3.3	46	-0.17	0.02	0.97	0.300	1.100	67.57	0.283	1	44	2.00
Est	0.347	1.10	29	3.3	32	-0.22	0.02	0.96	0.227	1.100	0.68	0.281	1	30	2.00
Est	0.312	1.04	35	3.3	38	-0.26	0.03	0.96	0.300	1.100	2.16	0.278	1	36	2.00
Est	0.287	1.00	39	3.3	42	-0.30	0.03	0.95	0.300	1.100	8.03	0.276	1	40	2.00
Est	0.340	0.97	30	3.3	33	-0.35	0.04	0.94	0.241	1.100	0.82	0.274	1	31	2.00
Est	0.373	0.95	25	3.3	29	-0.40	0.04	0.93	0.190	1.100	0.41	0.271	1	26	1.51

[13] $(N_1)_{60} = N_{60} * C_N$ is the overburden corrected penetration resistance (Equation 31, I&B 2008) [14] $\Delta(N_1)_{60} = \exp[1.63 + (9.7/(FC+0.1)) - (15.7/(FC+0.01))^2]$ represents the change in $(N_1)_{60}$ with fines content (Equation 76, I&B 2008)

[15] $(N_1)_{60cs} = (N_1)_{60} + \Delta(N_1)_{60}$ is the equivalent clean-sand SPT penetration resistance (Equation 75, I&B 2008)

[16] $\alpha(z) = -1.012 - 1.126 \sin((z/11.73) + 5.133)$ in which z is depth in meters (Equation 23, I&B 2008)

[17] $\beta(z) = 0.106+0.118sin((z/11.28)+5.142)$ in which z is depth in meters (Equation 24, I&B 2008)

[18] $r_d=exp[\alpha(z)+\beta(z)M]$ is shear stress reduction coefficient (Equation 22, I&B 2008)

[19] $C_{\sigma}=1/(18.9-2.55 \text{ sqrt}[(N_1)_{60cs}] \le 0.3$ is the coefficient for K_{σ} (Equation 56, I&B 2008)

[20] $K_{\sigma} = 1-C_{\sigma}ln(\sigma_{vo}/P_a) \le 1.1$ is the overburden correction factor (Equation 54, I&B 2008)

[21] CRR_{M7.5, cvc} is the derived correlation between CRR and corrected penetration resistance (Equation 70, I&B 2008)

 $[22] CSR_{M7.5,\sigma'vc}=0.65(a_{max}/g)(\sigma_v/\sigma_v)r_d(1/MSF)(1/K_{\sigma}) is the equivalent CSR for the reference values of M=7.5 and \sigma'_{vc}=1 atm (Equation 69, I\&B 2008)$

[23] NL = non-liquefiable; L = potentially liquefiable

[24] Groundwater assumed to be at a depth of 20 feet below ground surface during the field investigation (for blow count correction)

[25] Fines content correction for liquefied shear strength from Seed 1987 (Table 4, pg 126, I&B 2008)

[26] MOD-CAL refers to 2.5-inch ID sampler

[27] $\gamma_{\text{lim}} = 1.859[1.1 - \text{sqrt}((N_1)_{60cs}/46)]^3 > 0$ but less than 50% = limiting shear strain (Equation 86, I&B, 2008)

 $[28] F\alpha = 0.032 + 0.69 sqrt[(N_1)_{60cs}] - 0.13(N_1)_{60cs}, where (N_1)_{60cs} is limited to values > 7 (Equation 93, I&B, 2008)$

 $[29] \gamma_{max} = min[\gamma_{lim}, 0.35(2-FS)((1-F\alpha)/(FS-F\alpha)] \text{ for } 2 > FS > F\alpha; \text{ if } FS < F\alpha, \gamma_{max} = \gamma_{lim} \text{ (Equations 91 \& 92, I\&B, 2008)}$

[30] $\Delta Hi = Layer thickness (ft)$

 $[31] \epsilon_v = 1.5 exp(-0.369 sqrt[(N_1)_{60cs}] x [min(0.08, \gamma_{max})] = post liquefaction volumetric strain (Equation 96, I&B, 2008)$ [32] $\Delta Si = (\Delta hi)(\varepsilon v)$